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Abstract 
 
The brain is treated as a nested hierarchical complex system with substantial interactions 
across spatial scales. Local networks are pictured as embedded within global fields of 
synaptic action and action potentials. Global fields may act top-down on multiple 
networks, acting to bind remote networks. Because of scale-dependent properties, 
experimental electrophysiology requires both local and global models that match 
observational scales. Multiple local alpha rhythms are embedded in a global alpha 
rhythm.  
 
Global models are outlined in which cm-scale dynamic behaviors result largely from 
propagation delays in cortico-cortical axons and cortical background excitation level, 
controlled by neuromodulators on long time scales. The idealized global models ignore 
the bottom-up influences of local networks on global fields so as to employ relatively 
simple mathematics. The resulting models are transparently related to several EEG and 
steady state visually evoked potentials correlated with cognitive states, including 
estimates of neocortical coherence structure, traveling waves, and standing waves.  
 
The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) 
modes lower than about 20 Hz may easily occur in neocortical/white matter systems 
provided: Background cortical excitability is sufficiently high; the strength of long 
cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local 
networks on the global dynamic field is sufficiently weak. The global models provide 
"entry points" to more detailed studies of global top-down influences, including binding 
of weakly connected networks, modulation of gamma oscillations by theta or alpha 
rhythms, and the effects of white matter deficits.  
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1. Introduction 
 
1.1 Scope and motivations for this paper 
 
This paper addresses the following issues that cross traditional boundaries between 
electrophysiological studies at the disparate spatial scales of local field potentials (LFP), 
electrocorticography (ECoG) and electroencephalography (EEG) as indicated in table 1. 
The main topics are:  1) Contributions of cortico-cortical axon delays to observed spatial-
temporal properties of EEG, including traveling and standing waves. 2) Data studied at 
the large, but distinct, scales of low and high resolution EEG. 3) Relations between 
anatomical and functional connectivity measured at large scales, the latter often estimated 
with EEG coherence. 4) The potential importance of such functional connectivity 
measures for clinical studies of white matter disease. 5) The effects of top-down global 
dynamics on local networks, including modulation of gamma oscillations by theta or 
alpha rhythms.  
 
Why do we focus here on global rather than local models of neocortical dynamics? We 
review several neocortical global models in which predicted large-scale spatial-temporal 
dynamic behaviors are due largely to propagation delays in cortico-cortical axons. That 
is, all bottom-up influences on global dynamics based only on axon delays are neglected 
to first approximation as indicated by the dashed arrow in fig. 1. We do not claim that 
these (limiting case) idealizations of cortical-white matter systems represent genuine 
brains with high accuracy; rather they are proposed mainly as convenient "entry points" 
into more comprehensive multiscale theoretical, experimental and clinical studies. Given 
this focus, we do not attempt to review the large body of theoretical work based on 
networks operating at multiple local scales, which model various aspects of brain 
dynamics.  Such local network models often consist of coupled differential equations, 
with solutions for various field variables that may be related to data recorded at matching 
scales. For example, intermediate (mm) scale local models appear appropriate for some 
comparisons to ECoG studies. This picture is consistent with the inherent spatial filtering 
associated with data collected at the LEP, ECoG, and EEG scales as discussed in Sec 1.6, 
although such local (mm scale) dynamics may be substantially modulated by global (cm 
scale) dynamics in some brain states.    
 
Comprehensive reviews of local network models and their connections to genuine data at 
EEG and/or ECoG scales include (Uhl 1998; Friston 2005; Jirsa and McIntosh 2007; 
Moran et al 2013). We do not claim that the global models outlined in this paper are in 
any sense "better" than such local network models. Rather, we view global models as 
complementary to local network models, providing explicit top-down mechanisms that 
may modulate and/or facilitate different aspects of local network dynamics, e.g. the 
production or synchronization of gamma oscillations by global alpha or theta rhythms.  
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Human brains are highly complex systems exhibiting distinct properties observed at 
different spatial and temporal scales. As long emphasized by many (e.g. Freeman 1975, 
1987; Ingber 1982; Nunez 1995, 2000; Jirsa and Kelso 1999; Friston 2005; Nunez and 
Srinivasan 2006a; Sporns 2011) multiple models are required to make contact with 
experimental observations of different brain variables, recorded at different spatial and 
temporal scales, and related to different cognitive functions or disease states. The global 
models of this paper make certain experimental predictions about very large scale spatial-
temporal EEG properties: oscillation frequencies lower than about 20 Hz, coherence 
patterns, standing waves, and traveling waves. The extensive EEG literature has long 
demonstrated robust correlations between these slow oscillations and cognitive functions 
and clinical disease states. Readers may naturally question the relationships of these large 
scale events to the many other phenomena observed with EEG, ECoG and LFP. Our 
general answer is that many other phenomena, especially when recorded at the smaller 
scales of ECoG and LEP, cannot be modeled by purely global models; rather they require 
complementary models developed at multiple smaller scales matching the appropriate 
experimental conditions as indicated in tables 1 and 2. The scientific notion of 
"complementarity" was famously promoted by Niels Bohr, not only in the context of 
quantum systems, but for macroscopic systems belonging to the broad category that we 
now label "complex systems" (Heisenberg 1971).   
 
To sum up the general approach of this paper, we employ Galilean idealizations in order 
to create relatively simple global models that modulate local networks and are more 
easily related to certain kinds of experimental data, especially several observed properties 
very large scale scalp potentials (EEG), e.g., coherence structures observed in several 
frequency bands and multiple local alpha rhythms embedded in a global alpha rhythm. 
This general philosophy was famously employed by Galileo, who modeled falling bodies 
with no air resistance even though he lacked the technology to remove the air. Similarly, 
we are unable to shut down brain networks in living brains such that the remaining 
phenomena due only to axon delays are easily observed, although some anesthesia and 
even waking (resting, eyes closed) alpha states may crudely approximate such simple 
dynamics at large scales. We promote these simple models because they facilitate a 
transparent conceptual framework that incorporates axon delays with broad experimental 
and clinical implications. The basic question of whether or not our focus on global 
models is scientifically useful is addressed further in the context of experimental work 
discussed in Sec. 3. There we show that perhaps a dozen large scale (scalp) dynamic 
behaviors are anticipated by axon delay mechanisms, whereas many other aspects of 
EEG and especially ECoG (recorded from either epidural or subdural cortex) and LFP 
can only be explained by local network models developed at matching scales as implied 
by table 2. In addition, many other phenomena are expected to depend critically on 
combined local and global mechanisms (Nunez 1989, 1995, 2000; Jirsa and Haken 1997; 
Haken 1999; Robinson et al 2004; Nunez and Srinivasan 2006a).      
 
 
1.2 Complementary local and global models  
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We contend that descriptions of the brain at large scales should not be regarded as poorly 
resolved approximations of an underlying microscopic order; rather different scales offer 
parallel and complementary views of brain organization. This idea has long been 
appreciated by complex physical systems scientists (Ingber 1982; Haken 1983; Nunez 
1995, 2010) and is nicely developed specifically for brain networks in a recent book 
(Sporns 2011). Even in relatively simple systems, multi-scale theories are typically 
required for experimental verification as in the prominent example of separate micro and 
macroscopic versions of Maxwell's equations governing electromagnetic phenomena. 
Much of early 20th century physics was concerned with establishing cross-scale relations 
between electromagnetic fields observed at different scales (Jackson 1962). The 
analogous developments in electrophysiology are now only in their very early stages 
(Freeman 1975; Ingber 1982; Nunez 1982, 1995; Nunez and Srinivasan 2006). 
 
With this general multi-scale view in mind, we classify neocortical dynamic models as 
local, global, and combined local/global. The label global model applies to the work here, 
indicating mathematical models in which delays in the cortico-cortical axons forming 
most of the white matter in humans provide the underlying time scales for dynamic 
behaviors. Periodic boundary conditions, which force all cortical variables to be 
continuous functions of cortical surface coordinates, are generally essential to global 
theories because the cortical-white matter system of each hemisphere is topologically 
close to a spherical shell (Dale et al 1999; Fischl et al 1999). Homogeneous models 
typically predict standing and traveling waves with frequencies and damping 
(attenuation) depending on cortical background excitability, controlled on long time 
scales by neuromodulators. The models predict a human global alpha rhythm 
environment in which several independent local alpha processes are embedded, 
consistent with EEG and ECoG data. We also employ the label regional (Silberstein 
1995b; Jirsa 2009) to indicate resonances due to point-to-point (inhomogeneous and 
anisotropic) axon delays between isolated pairs of cortical locations as developed here. 
 
The label local model indicates mathematical treatment of cortical or thalamo-cortical 
interactions in which cortico-cortical axon propagation delays are neglected; that is, axon 
propagation speeds are assumed to be infinite as in the classic local model of Wilson and 
Cowan (1972, 1973). The underlying time scales in such models are often PSP rise and 
decay times due to membrane capacitive-resistive properties, typically resulting in 
coupled differential equations and often predicting self-sustained (limit cycle) oscillations 
in local networks. Thalamo-cortical networks  are also “local” from the viewpoint of 
surface electrodes, which cannot distinguish purely cortical from thalamo-cortical 
networks. These models are also “local” in the sense of being independent of global 
boundary conditions. While such local models are apparently needed to model much of 
mm scale dynamics (e.g., gamma or local alpha) observed with ECoG, here we focus on 
global models that can explain several aspects of the cm scale dynamics (e.g., global 
alpha) observed with EEG.  
 
We review several complementary global models of brains that may facilitate useful 
intuitive steps towards the development and interpretation of more comprehensive brain 
theory. The basic idea behind global models is simple; action potentials at each cortical 
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location generate synaptic action at distant locations after time delays that depend on 
axon propagation speed and separation distance. For this reason, most models based on 
cortico-cortical axon delays employ a similar mathematical structure  consisting of 
integral or integro-differential equations incorporating axon propagation speeds, cortical 
separation distances and anatomical connectivity functions or matrices. Here we focus on 
the simplest of these global models with either homogeneous or very simple 
heterogeneous connections, thereby allowing relatively simple analytic solutions to be 
obtained. Nevertheless, these models employ enough genuine physiology and anatomy to 
provide several qualitative and semi-quantitative connections to (cm scale) EEG, but they 
cannot predict smaller scale phenomena unless coupled with local theories. Some of this 
global work has been published earlier, but often with different emphasis and 
mathematical methods at various times (Nunez 1974a, 1981, 1989, 2000; Katznelson 
1981; Nunez et al 2001; Nunez and Srinivasan 2006a,b) and in different publications, 
including several PhD dissertations (Katznelson 1982; Srinivasan 1995; Wingeier 2004) 
and a book now out of print (Nunez 1995).  
 
1.3 Top-down modulation of local rhythms by global theta and alpha 
 
Our aim here is to provide an easily accessible overview of several global models with 
simple analytic solutions and account for some recent experimental and theoretical 
developments by ourselves and others, especially involving global top-down influences 
on local networks, as suggested by fig. 1. We have, for example, recently employed a 
modified Wilson-Cowan (local) model embedded in a global alpha band environment to 
model global top-down modulations of locally generated gamma activity (Thorpe 2012; 
Srinivasan et al 2013). Low frequency global oscillations (e.g. theta or global alpha, less 
than 20 Hz) are predicted by such models to facilitate and/or couple (bind) high 
frequency oscillations (e.g. local alpha or gamma) in distinct local networks.  
 
This general kind of theoretical approach makes contact with several recent experiments. 
Human ECoG studies indicate that ongoing high gamma (80–150 Hz) amplitudes are 
modulated by the phase of low-frequency theta (4–8 Hz) (Canolty et al 2006; He et al 
2010; Voytek et al 2010) and alpha (8–12 Hz) (Osipova et al 2008; Crone et al 1998a; 
Voytek et al 2010) oscillations. Such cross-frequency coupling may be central to the 
distinct functional roles played by various brain rhythms, perhaps acting to bind remote 
networks to produce a unified behavior and consciousness (Izhikevich 1999; Jensen and 
Colgin 2007; Nunez 2010; Srinivasan et al 2013). Low-frequency oscillations may 
coordinate long-range communication between different brain regions (von Stein and 
Sarnthein 2000), whereas gamma activity appears to be more spatially restricted and 
reflects local cortical processing (Crone et al 1998b; Fries et al 2001; Canolty et al 2007). 
The top-down conceptual framework implied by these studies appears to have broad 
implications for future studies of healthy brains as well as white matter disease.  
 
Coupling between discrete networks can occur at multiple scales smaller than the 
(approximate) 2-5 cm scale observed with EEG or the (approximate) 2-5 mm scale of 
ECoG as implied in tables 1 and 2. Multiple local circuits apparently support different, 
discrete frequencies of neocortical rhythms. Several dynamic mechanisms have been 
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proposed to support spectral information processing. In one theoretical study (Roopun et 
al 2008), activity in two co-active local circuits may combine to generate a third 
frequency whose period originates from a sum of the original two. In an experimental 
LEP study of macaque visual cortex Spaak et al (2012) found a robust coupling between 
alpha rhythm phase in deeper layers and gamma amplitude in granular and superficial 
layers. Furthermore, increases in alpha amplitude occurred when gamma amplitude and 
burst length decreased. These findings demonstrate robust inter-laminar cross-frequency 
coupling, thereby supporting the view that local neuronal activity in the alpha frequency 
range modulates processing in cortical microcircuits in a top-down manner. Such inter-
relationships between discrete network rhythms provide plausible dynamic substrates for 
multi-scale, parallel processing of sensory information over a range of temporal and 
spatial scales (Wiskott and Sejnowski 2002; Smith et al 2006).  
 
1.4 Our focus on axon propagation delays and global top-down effects 
 
When author PLN first proposed a global traveling/standing wave model based on axon 
propagation delays over 40 years ago (Nunez 1972, 1974a), all existing neocortical 
dynamic models were strictly local. Over the same 5-10 year period several new local 
models were advanced, notably the works of Wilson-Cowan (1972, 1973), Freeman 
(1975, 1987, 1992a,b), Lopes da Silva and colleagues (van Rotterdam et al 1982), and 
Ingber (1982).  Inclusion of cortico-cortical axon delays in combined local/global models 
came much later, occurring mainly (if not exclusively) over the past 15-25 years or so; a 
few examples are (Nunez 1989, 2000; Jirsa and Haken 1997; Jirsa et al 1999; Haken 
1999; Robinson et al, 1997, 1998, 2003, 2004; Liley et al 1999, 2002, 2003; Jirsa and 
Kelso 2000; Wright et al 2001; Bojak et al 2004; Jirsa 2004, 2009; Breakspear et al 2006; 
Ingber and Nunez 2010; Freyer et al 2011; Pinotsis et al 2013). We have previously 
discussed several of these (mostly) complementary studies, including their relationships 
to pure global models (Nunez 2000; Nunez and Srinivasan 2006a). 
 
One can conjecture several reasons for the 15-20 year gap between sophisticated local 
model development and the later inclusion of axon propagation delays to produce 
combined local/global models. The most obvious and defensible reasons involve the 
mathematical complexity of combined local/global models. Another reason appears to 
have been a relative disinterest in cortico-cortical connections by early neuroscientists, 
although important exceptions are noted, namely Krieg (1963, 1973), Braitenberg (1978), 
and Braitenberg and Schuz (1991). In reply to questions about cortico-cortical axons by 
author PLN in 1978, one prominent neuroanatomist responded that he was a "cortical 
anatomist" and cared little about lower brain structures. The estimate that more than 95% 
of human white matter consists of cortico-cortical axons with only a few per cent 
thalamo-cortical was not widely appreciated in the 1970s (Nunez 1981, 1995); it may not 
be fully appreciated even today. Regardless of this history, many of today's 
neuroscientists are focused on brain connections, including cortico-cortical axons largely 
responsible for "small world" dynamic behavior (Friston 2005; Jirsa and McIntosh 2007; 
Sporns 2011; Seung 2012). This increased interest in connectivity provides one 
motivation for this (partly) review paper. Another motivation stems from more recent 
experimental results that can be interpreted in the context of these global models. These 
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data include evidence for global alpha band dynamics with multiple embedded local 
alpha networks in both spontaneous EEG and steady state visually evoked potentials 
(SSVEP), the latter demonstrating local processes influenced by global resonances with 
implications for binding of local networks. The relatively recent association of a broad 
range of psychiatric and neurodevelopmental disorders with white matter deficits that 
may disrupt network timing (Hao et al 2006; Fields 2008) provides still another 
motivation for this paper.  
 
1.5 Brains as complex systems with state-dependent functional connections   
 
Human brains are typically viewed as the preeminent complex systems with cognition  
believed to emerge from dynamic interactions within and between brain sub-systems 
(Ingber 1982, 1995; Freeman 1992a,b; Ingber and Nunez 1995; Friston et al 1995; Haken 
1996, 1999; Mountcastle 1998; Tononi and Edelman 1998; Edelman and Tononi 2000; 
Buzsaki 2006; Sporns 2011; Bassett and Gazzaniga 2011). How can we reconcile high 
brain complexity with the simple traveling and standing waves predicted by the global 
models of this paper? One answer is to avoid taking oversimplified model details too 
seriously. Rather, we emphasize the more general point that global dynamic behavior can 
provide important top-down influences on local dynamics in many physical and 
biological systems (Haken 1983; Jirsa and Haken 1997; Nunez 1995, 2010; Ingber and 
Nunez 2010), for example production of local vortices and tornadoes by global weather 
patterns in the atmosphere's spherical shell. In physical systems, global boundary 
conditions can facilitate spatial coherence even when the temporal behavior of individual 
oscillatory modes becomes chaotic (Bishop et al 1983; Tabor 1989). In neocortex 
analogous global spatial structure could substantially influence embedded networks. 
 
Standing waves of global fields can naturally exhibit multiple synchronized regions with 
zero phase lag without need for direct interconnections (Nunez 1995, 2010; Nunez and 
Srinivasan 2006a,b). More generally, we suggest that such top-down influences directly 
address the binding problem of brain science (Habeck and Srinivasan 2000; Nunez et al 
2001, 2013; Nunez 2010; Nunez and Srinivasan 2007, 2010; Srinivasan et al 2013). That 
is, how is the unity of conscious perception generated by the brain's distributed local 
networks (Gazzaniga 2011)? An implied conjecture is that diseases like schizophrenia, 
autism, and Parkinson's may be manifestations of faulty binding of local networks, an 
idea with support from known neurotransmitter actions and EEG studies (Silberstein 
1995b; Brock et al 2002; Murias et al 2007; Boersma et al 2013).  
 
The global models of this paper imply close relationships of EEG/SSVEP functional 
connectivity measures like narrow band (e.g. 1 Hz) alpha and theta coherence to cortico-
cortical axon propagation delays; such relations may have important implications for the 
diagnosis and treatment of several brain diseases. Myelin controls action potential speed, 
and the synchrony of impulse traffic between distant cortical regions may be critical for 
optimal mental performance and learning (Fields 2008). A broad range of psychiatric 
disorders, including schizophrenia, chronic depression, bipolar disorder, obsessive-
compulsive disorder and posttraumatic stress disorder, has recently been associated with 
white matter defects, as have neurodevelopmental cognitive and emotional disorders 

http://health.nytimes.com/health/guides/disease/schizophrenia-disorganized-type/overview.html?inline=nyt-classifier�
http://health.nytimes.com/health/guides/disease/autism/overview.html?inline=nyt-classifier�
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including autism, dyslexia and attention-deficit hyperactivity disorder. The evidence for 
white matter involvement consists of gene expression studies, several different kinds of 
brain imaging methods and histological analysis of post mortem tissue (Fields 2008). 
Given these close relationships between white matter myelination and brain diseases, the 
theoretical global dynamic behaviors developed here imply specific connections between 
brain disease and global EEG, thereby potentially impacting future clinical study designs.  
 
Here we cite two salient anatomical and physiological features that contribute to brain 
complexity and, by implication, the conditions apparently required for healthy cognition. 
These features give rise to multi-scale spatial-temporal patterns of brain activity, revealed 
with imaging techniques like EEG, which are strongly correlated with mental states. One 
such salient feature is anatomical and physiological nested hierarchy as indicated in table 
2. Cortical anatomy and physiology consist of neurons within minicolumns within 
modules within macrocolumns (Szentagothai 1978; Ingber 1982; Nunez 1995; 
Mountcastle 1998; Feinberg 2009, 2012; Fingelkurts et al 2013).  Emergence and 
complexity generally occur in hierarchically nested physical and biological systems 
where each higher level of complexity displays novel emergent features based on the 
levels below it, their interactions, and their interactions with higher levels. Such systems 
may follow general principles that underlie many complex systems, including 
anthropology, artificial intelligence, chemistry, economics, meteorology, molecular 
biology, neuroscience, physics, psychology, and sociology (Ingber 1985; Haken 1983; 
Scott 1995; Gell-Mann and Lloyd 1996; Nunez and Srinivasan 2007; Edelman and 
Tononi 2000; Sporns 2011; Bassett and Gazzaniga 2011).  
 
Another salient feature of many complex systems is non-local interactions in which 
dynamic activity at one location influences distant locations without affecting 
intermediate regions, as enabled in human brains by long (up to 15-20 cm) cortico-
cortical fibers (Krieg 1963, 1973; Braitenberg 1978; Braitenberg and Schuz 1991; Nunez 
1995, 2010, 2011) and in human social systems by modern long distant communications 
facilitating small world behavior (Watts 1999; Bassett and Bullmore 2009). For example, 
the high density of short-range (mm scale) intra-cortical connections coupled with an 
admixture of cortico-cortical axons favors small world behavior. Small worlds often 
promote high complexity; they also appear to be abundant in brain structural networks, 
across systems, scales and species (Sporns 2011; Bassett and Gazzaniga 2011).  
 
1.6 Multiscale dynamics and corresponding observational scales 
 
Each of the following techniques-- raw EEG, high resolution EEG, ECoG (either cortical 
or dura surface recordings), LFP (local field potentials, typically intra-cortical) , MEG 
(magnetoencephalography), fMRI (functional magnetic resonance imaging), and PET 
(positron emission topography) image brain activity over a limited range of spatial-
temporal scales. Given the acknowledged complexity of brains, these methods provide 
complementary measures of multi-scale dynamic behavior in neocortex; such data call 
for distinct neural models at matching scales. In particular, experimental 
electrophysiology spans about five orders of magnitude of spatial scale as indicated in 
table 1. The fractal-like morphology of neocortical columns at multiple scales implies 

http://en.wikipedia.org/wiki/Anthropology�
http://en.wikipedia.org/wiki/Artificial_intelligence�
http://en.wikipedia.org/wiki/Chemistry�
http://en.wikipedia.org/wiki/Economics�
http://en.wikipedia.org/wiki/Meteorology�
http://en.wikipedia.org/wiki/Molecular_biology�
http://en.wikipedia.org/wiki/Molecular_biology�
http://en.wikipedia.org/wiki/Neuroscience�
http://en.wikipedia.org/wiki/Physics�
http://en.wikipedia.org/wiki/Psychology�
http://en.wikipedia.org/wiki/Sociology�
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that recorded dynamics are scale-sensitive, depending on the size and location of intra-
cranial electrodes and the spatial filtering of scalp potentials  (Abeles 1983; Nunez 1995, 
2010, 2012; von Stein and Sarnthein 2000; Nunez and Srinivasan 2006a,b; Srinivasan et 
al 2007; Otto et al 2012).  
 
Even scalp-recorded EEG can exhibit distinct dynamics at different spatial scales, notably 
unprocessed potentials (roughly 5-10 cm) and high resolution EEG (surface Laplacians 
and dura images, roughly 2-3 cm) as indicated in table 1. For example, the raw potential 
and dura image maps of a time slice of alpha rhythm are shown in fig. 2 (Wingeier 2004; 
Nunez 2010); these two disparate maps provide complementary, not competing,  
measures of neocortical dynamics, a point not always appreciated by EEG scientists 
(Nunez and Srinivasan 2006a). The potential map indicates that anterior and posterior 
regions are roughly 180 degrees out of phase (e.g. a simple anterior-posterior standing 
wave), whereas the corresponding high resolution (dura image) estimate reveals multiple 
alternating in and out-of-phase regions. Remote regions with the same shading exhibit 
zero phase lag with no apparent need for direct connections between them. The high 
resolution estimate may reveal some combination of embedded multiple network and 
correlated higher mode standing wave activity, perhaps suggesting that local networks 
evolve in a manner that is "dynamically compatible" (in some poorly understood sense) 
with global boundary conditions (Nunez 2010).  
 
Power spectra and coherence patterns over the scalp are generally quite scale-dependent,  
exhibiting large differences when time series analysis is applied to both raw potentials 
and the corresponding Laplacian or dura images estimated from the same data sets 
(Pfurtscheller and Neuper 1992; Nunez 1995, 2000, 2001; Nunez et al 1997, 1999; 
Andrew and Pfurtscheller 1997; Srinivasan et al 1998, 2007; Nunez and Srinivasan 
2006a). One robust observation of high resolution EEG is a substantial reduction in alpha 
rhythm power relative to other frequency bands, indicating that high-pass spatial filtering 
tends to suppress the long wavelength global alpha. This can occur while leaving local 
alpha rhythms, which may be generated in thalamo-cortical networks, in place (Wingeier 
et al 2001; Nunez et al 2001; Wingeier 2004; Nunez and Srinivasan 2006a,b; Nunez 
2011).   
 
Even the EEG, in which most of the short wavelength (high and intermediate spatial 
frequency) electrical activity has been suppressed by volume conduction, exhibits distinct 
multi-scale dynamics. Thus, we should be especially mindful of the inherent limitations 
of neural models that ignore spatial scale issues as emphasized  by the works of Ingber 
(1982, 1995), Freeman (1992b), Sporns (2011) and others. The global models outlined 
here, when used in isolation, are limited to dynamics recorded at the very large (5-10 cm) 
scale of unprocessed scalp-recorded EEG; however, they have much broader top-down 
implications for local network influences as suggested by fig. 1. We can quantify issues 
of spatial scale in experimental electrophysiology with the following thought experiment 
involving a real computer algorithm that transforms MRI images of cortical hemispheres 
into topologically equivalent spheres (Fischl et al 1999; Dale et al 1999). This idealized 
picture ignores complications due to cortical folding; however, the fundamental 
experimental issues are unaltered by such technical details.  
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Let Ω  represent angular surface location expressed in the usual spherical coordinates 
( ),θ φ , essentially (latitude, longitude).  Suppose that some dynamic variable ( , )tΦ Ω like 
subdural potential (ECoG) is to be measured over this idealized spherical surface. We can 
never measure ( , )tΦ Ω  with arbitrary precision; that is, the measurement process allows 
only estimates ˆ ( , )tΦ Ω  of this variable. We can express any arbitrary surface dynamics, 
be they theoretical or experimental, in a series of orthogonal functions (generalized 
Fourier series). Given that our idealized (single hemisphere) cortical surface is a sphere, 
we naturally adopt the standard spherical harmonics ( )lmY Ω as basis functions as follows: 
 

                                         ( ) ( )
0

ˆ , ( )
l

lm lm lm
l m l

t K a t Y
∞ +

= =−

Φ Ω = Ω∑∑                                        (1.1) 

 
The functions ( )lmY Ω where ( ),l m  are restricted to integers have following basic 

mathematical properties required to represent any genuine physical variable ( ),tΦ Ω over 
the entire sphere: 1) finite everywhere on the sphere 2) continuous over the sphere such 
that ( ),tΦ Ω  satisfies periodic boundary conditions; that is, each spherical harmonic 

function is a single valued function of surface location Ω . The ( )lmY Ω functions are the 
two-dimensional spatial analogous of the sin( ) and cos( )t tω ω functions of ordinary 
spectral analysis. Each spatial function (or mode or pattern) ( )lmY Ω is weighted by a 
corresponding time-dependent function ( )lma t due only to the underlying dynamics, 
independent of experimental conditions. At each time slice it , 2 ( )lm ia t is the power 
associated with the spatial function ( )lmY Ω . Thus, any general spatial pattern may be 

decomposed into different components ( )lmY Ω , each one weighted by the corresponding 
time-varying function ( )lma t . 
   
The actual variable to be measured ( , )tΦ Ω , which we can never know exactly, is given 
by the same expression Eq (1.1), but with all the coefficients 1lmK = ; the lmK are spatial 
mode (pattern) weights that account for experimental conditions. That is, the condition 

1lmK = is required in the expression for the actual variable ( , )tΦ Ω  since all dynamic 
behaviors are (by definition) included in the functions ( )lma t . The functions ( )lmY Ω  
consist of progressively higher spatial frequencies in two surface dimensions for larger 
indices ( ),l m ; for example, ( )00Y Ω is constant over the entire spherical surface while 

( )10Y Ω has opposite signs over the two halves. The alpha rhythm topography of fig. 2a 

suggests dominant contributions from ( ) ( )10 20 and Y YΩ Ω in each hemisphere, but the 
corresponding high resolution image of fig 2b reveals much more relative contributions 
from higher spatial frequencies ( ),l m . High resolution EEG essentially involves 
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estimating the lmK to remove volume conduction effects, but this process necessarily also 
removes genuine contributions from large correlated source regions.  
 
Each mode ( ),l m is associated with a distinct time series ( )lma t , which is determined only 
by cortical source dynamics, independent of the measurement process. By contrast, the 

lmK values depend only on experimental methods (EEG, MEG, ECoG, LFP), independent 
of cortical dynamics. Volume conduction models estimate the lmK that relate scalp 

potentials ( )ˆ ,tΦ Ω to the underlying (unfolded) dural surface potential ( ),tΦ Ω of the 
combined cortical hemispheres (Srinivasan 1995; Srinivasan et al 1998; Nunez and 
Srinivasan 2006a). The lmK constitute band pass spatial filters determined by the 
following factors: 1) the spatial extent of the sensor array (e.g. electrode or magnetic 
coil).  2) sensor spacing density. 3) volume conduction, including sensor separation 
distance from sources. 4) in the case of intracranial recordings, electrode size (Abeles 
1982; Nunez 1995). The electrode size influence may be minimized by spatial smoothing 
over scales smaller than the electrode surface; this occurs naturally in EEG and (to a 
lesser extent in ECoG) by volume conduction. In intracortical recordings, the standard 
LFP is obtained from microelectrodes placed sufficiently far from membrane surfaces to 
avoid domination by individual neurons; data are also typically low-pass filtered (< 350 
Hz) to remove fast activity coming from action potential sources (Legatt et al 1980; Gray 
et al 1995). Both procedures are expected to produce data smoothing over very small 
spatial scales such that LEP is independent of electrode size down to these small scales 
(Otto et al 2012; Nunez 2012).  
 
Our estimates of the lmK coefficients relating EEG to ECoG recorded from the smooth 
dura surface (of the combined hemispheres) are based on calculations employing volume 
conductor head models. They have been partly verified by calculating spatial spectra 
(Srinivasan et al 2006) and coherence patterns (Srinivasan et al 2007; Winter et al 2007) 
from recorded brain "noise." That is, scalp recordings outside driving frequency bands of 
SSVEP and spontaneous EEG frequencies above 40 Hz were assumed to lack spatial 
structure so that recorded scalp potentials could be compared to scalp potentials and high 
resolution (Laplacian) estimates simulated by random dipole sources in head models.  
Due to volume conduction, the lmK values in unprocessed EEG peak at 1l =  and become 
negligible for 5 10l > − . By contrast, with high resolution EEG (Laplacian or dura 
image), lmK values are small to moderate at 1l = , peak near 4 6l = − and remain 
significant beyond 20l  , although practical estimates of lmK for large l from EEG data 
(typically employing spline fits) become progressively less accurate (Nunez and 
Srinivasan 2006a).  Average reference potentials force 00 0K = .   
 
To sum up this section, we first note that any spherical surface dynamics may be 
expressed as a linear sum of temporal functions ( )lma t , each weighted by the 
corresponding experimental spatial filter term and spherical harmonic function. For other 
surfaces, one might choose other basis functions, but such alternate choice would not 
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significantly change the general ideas of this discussion. The linear superposition of 
modes, Eq (1.1), is valid even though the underlying anatomy and source dynamics are 
expected to be nonlinear, inhomogeneous, and anisotropic. This general applicability may 
be appreciated by noting the general validity of Fourier transforms of time series, 
regardless of the underlying process, including chaos and other strongly nonlinear 
phenomena. Thus, the formalism applies to any system with spherical surface geometry, 
for example, weather patterns over the earth or the quantum wave function of the 
hydrogen atom (omitting radial functions). The following temporal Fourier transform of 
Eq (1.1) is equally general: 
 

                                      ( ) ( )
0

ˆ , ( )
l

lm lm lm
l m l

K a Yω ω
∞ +

= =−

Φ Ω = Ω∑∑                                      (1.2)                               

 
The spatial filter coefficients lmK  tend to be small for small l if the electrode array 
diameter is small as in many ECoG experiments, essentially because low spatial 
frequency activity will typically appear nearly constant over an array that is small 
compared to dominant wavelengths. Thus, any oscillations ( )lma ω corresponding to small 
l may be suppressed in localized ECoG or LFP recordings. Such unintended high pass 
spatial filtering depends partly on the effectiveness of reference electrode placement. 
That is, the longest possible wavelengths equal effective cortical circumference, 
potentially contributing signal to any body reference.  In sharp contrast, the 

lmK coefficients of scalp recordings tend to be small for moderate or large l  due to 
volume conduction. High resolution EEG represents an intermediate case between EEG 
and ECoG. Thus, we generally expect to see different spectra, observed in experiments as 
weighted sums of the functions ( )lma ω , in different kinds of recordings. This has been 
demonstrated in simultaneous EEG/ECoG recordings in which beta rhythms recorded 
from cortex were largely missing at the scalp (Pfurtscheller and Cooper 1975; Nunez 
1981, 1995). In another example, comparisons of raw scalp spectra to high resolution 
spectra of (the same) spontaneous EEG data show a large reduction in relative alpha 
power in the high resolution estimates (Wingeier 2004; Nunez and Srinivasan 2006a). 
Correlation patterns over the scalp (e.g. covariance and coherence) are also sensitive 
functions of spatial scale as revealed by comparing raw scalp potential data to high 
resolution EEG (Nunez 1995; Nunez et al 1997, 1999; Srinivasan et al 1998, 2006; 
Srinivasan 1999). The theory and data cited here show conclusively that temporal 
filtering of EEG is a byproduct of spatial filtering as suggested by Eq (1.2). 
 
 
1.7 Possible origins of neocortical oscillations 
 
As discussed in the context of spatial scales, the distinct spatial and dynamical properties 
of EEG oscillations in low (less than about 20 Hz) and high (greater than about 20 Hz) 
frequency bands suggest the need for distinct models to explain these phenomena. Given 
any unknown physical or biological system that produces oscillations at some preferred 
(or resonant) frequency / 2f ω π= , a reasonable starting point for model development is 



 13 

to identify the origins of the implied underlying time delay τ , roughly estimated as the 
interval of substantial phase change of the oscillation, that is, 
 
                                                                 

1τ ω−
                                                    (1.3)      

 
The implied physiological time scale for the (8 to 13 Hz) alpha rhythm is τ  = 12 to 20 
ms.  More generally, the most robust human EEG rhythms recorded from the scalp (1 to 
20 Hz) correspond to time delays τ = 8 to 160 ms.  How does this delay range compare 
with mammalian physiology? Whereas early studies of membrane time constants in 
mammalian cortex were typically less than 10 ms, more modern studies with improved 
recording methods report a wider range up to about 100 ms (Koch et al 1996). While 
synaptic delays (PSP rise and decay times) lie in a general range (within a factor of 
perhaps five) that might account for dominant EEG frequencies, claims of close 
agreement between the details of observed EEG spectra and dynamic theories based on 
membrane time constants do not by themselves offer critical model validation (Nunez 
2011). Model parameters can always be chosen to “match” EEG data, which, in any case, 
vary widely between brain states.   
 
Models that incorporate the spatial extent of neocortex and axon transmission delays 
between neural populations are called global models.  These predict global oscillations 
over the surface of the cortex that can exhibit high spatial coherence and have wave-like 
properties that depend primarily on the transmission delays between cortical populations; 
that is, on axon propagation speeds and length (Nunez and Srinivasan 2006a,b, 2010). 
The dominant modes of these spatially distributed oscillations are often predicted to lie 
below about 15-20 Hz in the theta and alpha bands. While both global and local network 
theories have been developed independently, their interaction across spatial and temporal 
scales is not well understood.   
 
The underlying time scales in local network models are typically postsynaptic potential 
rise and decay times due to membrane capacitive-resistive properties (Wilson and Cowan 
1972, 1973). Local theories often predict EEG signals with frequencies above 20 Hz. 
These results are consistent with more detailed studies of spiking neuron models 
(Izhikevich 2006; Izhikevich and Edelman 2008) that predict fast frequency oscillations 
in cortical populations unless coupled with axon delays as in a global network or field.   
Physiologically realistic compartment models incorporating the interactions between 
excitatory and inhibitory populations in cortex give rise to fast oscillations at gamma 
band frequencies (Bush and Sejnowski 1996; Traub et al 1997; Whittington et al 2000).  
 
In these kinds of models, the dynamics are determined primarily by PSP delays and 
strengths of excitatory and inhibitory synaptic connections.  More specific local models 
in sensory systems incorporate the essential spiking dynamics and connectivity of 
thalamo-cortical networks (Lumer et al 1997), also giving rise to gamma band 
oscillations.  While physiologically detailed models are useful to compare to data 
obtained in animal experiments, we suggest that comparisons to EEG and ECoG require 
model development in macroscopic variables that describe synaptic mass action as 
generally accomplished by the global and local/global models cited here.   
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2. Global Models 
 
2.1 Axon propagation delays and dependent variables 
 
The following simplified versions of global models propose equations for the two field 
variables, ( , )H tr  and ( , )G tr . ( , )H tr  is the modulation of excitatory synaptic action 
density about background, expressed as a function of time t and cortical location .r  If 

( , )e tΨ r  is the number of active excitatory synapses per unit cortical tissue area at the 
mm to cm scale, its modulation is ( , ) ( , )eH t t≡ δΨr r . Since axons with inhibitory 
synapses are believed to be almost exclusively intra-cortical and non-myelinated, 
corresponding axon delays are assumed here to be negligible to first approximation , and 
inhibitory synaptic action ( , )i tΨ r then only influences cortical background excitability 
in this very large scale model. The variable ( , )G tr  is the mm to cm scale modulation of 
action potential density about background. The interrelations between the following 
limited case models are indicated in fig. 3 with appropriate section numbers shown in 
boxes.   
 
All three models described in this paper are based on the following linear integral 
equation relating the variables ( , )H tr  and ( , )G tr ; solutions require coupling to a 
second (generally nonlinear) equation. The excitatory synaptic action at cortical location 
r may be expressed in terms of an inner integral over the cortical surface and outer 
integral over distributed axon propagation speeds as  
                 

             21
0 1 1 1 1 1

10

( , ) ( , ) ( , , ) ,       
cortex

H t H t dv v G t d r
v

∞ − 
= + ℜ − 

 
∫ ∫∫

r r
r r r r r            (2.1)        

                            
Equation (2.1) is based on the simple, non-controversial idea that excitatory synaptic 
action at cortical location r is due to local sub-cortical input 0 ( , )H tr plus excitatory 
action potential density ( ),G tr  transported by cortico-cortical axons and integrated over 
the entire neocortical hemisphere. Callosal action potentials are neglected in this simple 
version. The inner integrals in Eq (2.1) are over cortical surface coordinates; action 
potentials at locations 1r  produce synaptic activity at location r after a delay that is 
proportional to cortical separation distance and inversely proportional to axon speed 1v . 
Distances are defined on an idealized smooth cortical surface as in an imagined inflated 
cortical hemisphere (Fischl et al 1999; Dale et al 1999). All the complications of white 
matter (cortico-cortical) axon tracts (after cortical smoothing) are included in the kernel 
or distribution function 1 1( , , )vℜ r r . The outer integral is over generally distributed axon 
propagation velocities 1v .  
 
2.2 Homogeneous and heterogeneous cortico-cortical systems may co-exist 



 15 

 
The earliest global models were based on translationally invariant (homogeneous) 
cortico-cortical distribution functions; that is, the number of axon connections between 
any pair of equally separated cortical locations was assumed constant, expressed 
mathematically as 1 1 1 1( , , ) ( , )v vℜ =ℜ −r r r r . Model axon systems exhibiting assumed 

exponential fall-offs in connection density with cortical separation distances 1−r r were 
employed mainly for mathematical convenience (Nunez 1994, 1989; 2000; Katznelson 
1981, 1982; Jirsa and Haken 1997; Nunez and Srinivasan 2006a,b). The idealized models 
were partly justified in separate studies employing alternate homogeneous distribution 
functions (Nunez 1995; Haken 1999), which suggest that predicted EEG properties are 
relatively insensitive to the assumed exponential distribution, provided it remains 
homogeneous and connection density tends to fall off with separation distance.  
 
Models that treat cortico-cortical connections as purely homogeneous are not generally 
expected to be physiologically realistic; rather they provide convenient analytic solutions 
and "entry points" to models with more realistic connections. One appropriate first step is 
to embed heterogeneous two-point connections into the otherwise homogeneous 
connectivity matrix representing 1 1( , )vℜ −r r as proposed by Jirsa (2009) and the 
alternate version developed in Sec 2.4 below. This general approach holds promise for 
more anatomically realistic models since arbitrary connectivity matrices can be 
constructed from linear sums of two-point connections. In a more physiologically 
realistic example Ghosh et al (2008) modeled functional connectivity using a primate 
connectivity matrix and individual network nodes consisting of neural oscillators 
embedded in the model network. A more recent study of both homogeneous and more 
realistic heterogeneous connections in a one-dimensional model has delineated several 
kinds of dynamics to be expected in each system (Pinotsis et al 2013). For example, 
homogenous connectivity matrices predict spatially periodic modes, while progressively 
more localized dynamics reflect increasing degrees of heterogeneous coupling topologies. 
The resulting effect on oscillatory dynamics at different scales in one and two 
dimensional heterogeneous systems is likely to be the subject of much further study.  
  
The basic question of the relationships between anatomical and functional connectivity as 
raised by Buzsaki (2006), Sporns (2011), Pinotsis et al (2013) and many others involves a 
number of subtle issues including the spatial and temporal scales at which all measures 
are obtained. Axon connectivity may be estimated from the injection of tracers 
transported along cell projections in the living brains of animals (Kotter 2007). In 
humans, structural connectivity is accessible by postmortem examination of dissected 
tissue (Krieg 1963, 1973) or noninvasive brain imaging methods like DTI (diffusion 
tensor imaging) that provide major tract information. Human white matter consists 
mostly of 1010 cortico-cortical axons (Braitenberg 1978). DTI images demonstrate 
impressive technology, but they currently fall far short of the resolution required to view 
most individual axons. That is, diameter histograms of human cortico-cortical axons are 
peaked in the 1 mµ  range (Tomasch 1954; Bishop and Smith 1964; Blinkov and Glezer 
1968); that is, about 1000 times smaller than the 1 mm resolution of DTI. Full agreement 
between tract tracing and DTI is unlikely to be achieved anytime soon since both 
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techniques probe structural connectivity at specific scales and with limited resolution. 
Comprehensive maps of axon connectivity at multiple mesoscopic and macroscopic 
scales may be some years away (Sporns 2011).  
 
Given these limitations on anatomical connectivity estimates, journal references to 
"realistic connections" should perhaps be re-worded to say "more realistic connections." 
Any anatomical connection matrix employed by field theories must be defined at some 
chosen spatial scale. Thus, the coordinates 1( , )r r used in 1 1( , , )vℜ r r locate patches of 
neocortex of a certain scale, and any associated field variable must be defined at the same 
scale. Our field variable, synaptic action density ( , )e tΨ r , is defined as the number of 
active excitatory synapses within patches (neural masses) at the 2-5 cm minimum scale of 
recordable scalp potentials. One can imagine, for example, a high degree of connection 
heterogeneity at mesoscopic (mm) scales perhaps superimposed on a more homogeneous 
connection system at the 2-5 cm scale (Braitenberg 1978; Nunez 1995, see fig. 11-14). 
The 2-5 cm scale connectivity may be more appropriate for models of the very large scale 
EEG, whereas the smaller scale ECoG may be better predicted by more heterogeneous 
connections as apparently implied by Pinotsis et al (2013).  
 
The question of whether the above approximate approach to modeling scalp potentials 
represents a useful scientific contribution is addressed further in the experimental Sec. 3, 
but here we emphasize that EEG functional connectivity as measured by EEG coherence 
depends strongly on spatial scale, frequency band, and brain state (Nunez et al 1997, 
1999, 2001; Srinivasan 1999). For example, large scale (low resolution) coherence in 
parts of the theta and alpha bands is easily manipulated by eyes opening or cognitive 
tasks (Nunez 1995; Silberstein et al 2003, 2004). High resolution EEG coherence patterns 
(estimated from spline-Laplacians) generally differ from low resolution patterns. Thus, 
the experimental data show unequivocally that fixed anatomy does not dictate functional 
connectivity, although the latter must be constrained by the former.  
 
Functional connectivity may depend on temporal as well as spatial scales. In one study 
DTI and fMRI data were obtained from a single brain slice (Koch et al 2002). Functional 
connectivity on relatively long time scales (compared to EEG) was estimated from cross-
correlation of BOLD signal fluctuations between voxel pairs, whereas structural 
connectivity was estimated from DTI. Structural and functional connectivity were 
generally positively correlated in the following sense. Low functional connectivity was 
only rarely found between structurally linked voxels; however, high functional 
connectivity often occurred between voxels that were not linked. The possible 
generalization of these data to other temporal and spatial scales is far from clear.   
 
 
2.3 Quasi-linear approximations 
 
The modulation density of action potentials ( , )G tr fired in a neural mass may be 
plausibly related to the modulation of active excitatory synapses ( , )H tr through a 
sigmoid function. The sigmoid function quantifies the idea that action potential density in 
a neural tissue mass is expected to progressively increase as a result of increased 
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excitatory synaptic input, but at a much slower rate for high input levels. The underlying 
assumption is that excessive excitatory input to a cortical tissue mass will generate 
enhanced negative feedback in healthy brains due to inhibitory synaptic action from 
contiguous cortex and/or thalamus well before a large fraction of neurons in the tissue 
mass fire, as in epilepsy. This picture differs from the local Wilson-Cowan (1972, 1973) 
sigmoid functions, which are based on refractory periods limiting action potential 
density. By expanding an assumed sigmoid relationship between action potential density 
and synaptic action, a second equation in the variables is employed forming a well posed 
mathematical model (Jirsa and Haken 1997; Nunez 2000) 
 
                                         3( , ) 2 ( , ) ( , )G t H t H tρ = β − αr r r                                     (2.2) 
 
Here ρ  is the number of excitatory synapses per cortico-cortical axon, β is a parameter 
determined by the background excitability of neocortex controlled by chemical 
neuromodulators on long time scales, and α is a parameter determined by the strength of 
inhibitory feedback. In the linear version of the global theory ( 0α → ), a dynamic 
transfer function (or its inverse, the dispersion function) is obtained. The dispersion 
relation is determined by the poles of the transfer function in the usual manner of linear 
systems analysis. A linear partial differential equation in the variable ( , )H tr  follows 
from the dispersion relation. The model cortical-white matter system then acts as a 
spatial-temporal filter with certain dominant frequencies.  
 
In the linear approximation, an x% increase in excitatory synaptic action in a neural 
tissue mass results in a y% increase in action potentials, with the ratio y/x fixed for any 
constant background excitation level .β  Approximate nonlinear versions of this model 
are based on physiological arguments, especially the postulate that instability is prevented 
in healthy brains by recruitment of additional inhibitory mechanisms (negative feedback) 
from thalamus or contiguous cortex, perhaps involving lateral inhibition. Quasi-linear 
analyses ( 0)α ≠  may employ modifications of the dispersion relation to derive nonlinear 
partial differential equations subject to numerical and semi-analytic solutions, as outlined 
in Sec. 2.7 and appendix D (Nunez 2000). 
 
2.4 Regional resonances: point-to-point axon connections 
 
An extreme limiting case of inhomogeneous and anisotropic axon distributions is the case 
of reciprocal (point-to-point) connections between two cortical locations 

 and a bx x (Silberstein 1995b; Jirsa 2009). From Eq (2.1) axon propagation in a one-
dimensional closed loop of cortex of circumference L is expressed as 
 

                
/2

1
0 1 1 1 1 1

10 /2

( , ) ( , ) ( , , ) ( , )
L

L

x x
H x t H x t dv x x v G x t dx

v

∞ +

−

−
= + ℜ −∫ ∫                      (2.3) 

 
By employing the linear approximation ( 0)α → in Eq (2.2) it is shown in Appendix A 
that the predicted oscillation frequencies Rω  and damping γ  are  
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                                                 1, 2,3,...R n nω τ π= =                                                (2.4)                              
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Here the regional time delay is a bx x
v

τ
−

= and v  is the (assumed) constant axon 

propagation speed.  Unstable oscillations occur for 0.5β >  in this linear limiting case. 
Consider a fiber system connecting cortical locations ax  and bx  of length 15 cm with 
(typical) axon speed equal to 600 cm/sec (Nunez 1995). The delay time is 25 msτ = and 
predicted resonant frequencies occur at  
 

                                             20,40,60,... Hz
2 2

n
n

nf ω
π τ

= = =                                   (2.6)                 

 
Local delays due to PSP rise and decay times may be simply modeled by adding such 
local delay to τ , thereby lowering the predicted resonance frequencies. Nonlinear effects 
could further reduce predicted frequencies (Nunez 2000; Nunez and Srinivasan 2006a). 
This same analysis could also apply to simple, point-to-point thalamo-cortical feedback 
loops.  
 
2.5 Distributed axons in one dimension 
 
In the original one-dimensional version (Nunez 1972, 1974a), axons were assumed to run 
only in the anterior-posterior direction of each hemisphere forming a closed loop of 
length L. Cortico-cortical axons may be parceled into Q homogeneous fiber systems with 
connection densities that fall off exponentially with separation �x –x1� plus multiple 
heterogeneous systems 1 1( , , )x x v : 
 

                 1 1 1 1 1 1
1

1( , , ) ( )   + ( , , )
2

Q

q q q q
q

x x v f v Exp x x x x v
=

 ℜ = ρ λ −λ − ∑          (2.7) 

 
Consider the idealized case when all but one of the systems consist only of short axons 
with negligible delays 1( )v →∞ , and the single long range system ( 1λ λ→ ) has a single 
axon speed v . In this limiting case, the short axon systems act only to increase the 
background excitability of the cortex, effectively adding to the parameter β in Eq (2.2) 
(Nunez 1995). The linear global model then predicts frequencies and damping (Nunez 
1995, 2000; Nunez and Srinivasan 2006a,b).  
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                                                 ( 1)   vγ = λ β −                                                       (2.9) 
 
The fundamental mode ( )1n =  is omitted from Eq (2.8) based on a separate study of the 
effect of finite loop circumference L (see appendix B). Note that unstable oscillations are 
predicted in the linear approximation Eq (2.2) when the cortical background excitability 
parameter 1β > . Some parameter ranges allow for linearly stable ( )1β ≤ , weakly 

damped ( )/ 1γ ω << slow oscillations, especially for axon systems that fall off very 

slowly with distance ( )1 5Lλ < − ; however, we believe it much more likely that brains 
operate normally in nonlinear states. Quasi-linear ( 0α ≠ ) analytic and numerical 
approximations suggest the production of limit cycle-like modes due mainly to inhibitory 
feedback in healthy brains (Nunez 2000); thus, we focus here on 1β ≥ . Similarly, the 
classic Wilson-Cowan (local) model, focuses on dynamics near unstable critical (spiral) 
points, allowing for stable limit cycle oscillations (Wilson and Cowan 1973; Srinivasan et 
al 2013).   
 
Consider a somewhat arbitrary example using the following physiologically plausible 
parameter choices ( ), ,v L λ = 1(700 cm/s, 60 cm, 0.15 cm )− . The predicted linear 
oscillation frequencies (Hz) for the modes 1,4n =  are shown in table 3 for cortical 
excitation level 1 2.7β≤ ≤ . Nonlinear effects are expected to alter these estimates, but 
perhaps only moderately (Nunez 2000), as discussed in appendix D. Mode number and 
corresponding wavelength (cm) are shown in the first column. The fundamental mode 
( 1n = ) produces no oscillations over this range of β  as it becomes non-oscillatory for 

0.7β > , a level below which it is strongly damped. Mode frequencies generally fall off 
slowly for increasing β  at first, but drop sharply near some critical excitation level nβ ; 
still larger β results in non-oscillatory lower modes, labeled  "None." In other words, 
each oscillatory mode frequency is generated over a preferred range of cortical 
excitabilityβ , a finding with EEG connections discussed in the experimental section.   
 
Equations (2.8) and (2.9) are based on the idealized assumption of a single axon speed, 
that is, 1 1( ) ( )f v v vδ= − . In contrast, fig. 4 shows composite experimental estimates of 
human axon speeds based on three independent studies. We fitted these data to the 
function (solid line)  
                                             ( ) ( )5

1 1 1expf v v av∝ −                                                (2.10) 
 
and recalculated resonance complex frequencies (poles of the dispersion relation). 
Predicted oscillation frequencies are essentially unchanged. The main outcome resulting 
from adopting this more realistic axon speed distribution is to "wash out" higher modes 
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by increasing their relative damping. In other words, nγ γ→  with progressively larger 
values of β required to produce linear instability in the higher modes as indicated in 
appendix B. 
 
 
2.6 Solutions in a spherical shell 
 
Here we outline solutions to Eq (2.1) in the spherical shell (fig. 6), representing one 
idealized cortical hemisphere, that is, mentally inflated to smooth out cortical folds 
(Katznelson 1981, 1982; Nunez 1995). The chosen axon distribution function is  
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As in Sec 2.5 cortico-cortical axons are parceled into Q homogeneous fiber systems with 
connection densities that fall off exponentially with separation distance, here expressed in 
terms of the angle 1( , )η Ω Ω between locations 1 and Ω Ω in a spherical shell of radius R 
(fig. 5). Also included in Eq (2.11) are multiple short anisotropic and inhomogeneous 
systems 1( , )Ω Ω for which delays are assumed negligible. We again consider the 
idealized case of a single long homogeneous system 1λ λ→ with sharply peaked speeds 

1 1 1( ) ( )f v v v= δ − . 
 
The factors in front of the exponential function Eq (2.11) provide the required 
normalization of the surface integral in terms of the number of synapses per axon ρ , that 
is  
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As shown in appendix C, the predicted synaptic action density in neocortex ( ),H tΩ  

resulting from arbitrary synaptic input ( )0 ,H tΩ  is given by the following sum over 
spatial modes, that is, the spherical harmonic functions ( )lmY Ω   
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The functions ( )lS ω  are evaluated in appendix C. This idealized neocortex/white matter 
system acts as a band pass spatial-temporal filter with one (or more) discrete preferred 
oscillation frequency for each spatial mode l . These resonant frequencies are obtained 
from the poles of Eq (2.13); they are independent of the index m because the single long 
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range axon system in this model is homogeneous and isotropic. When the poles plω  are 
found, Eq (2.13) becomes 
 

                             ( ) ( )
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, exp[ ]
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plm lm pl
p l m l

H t b Y j tω
∞ +
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Here the sum over the index p indicates possible multiple branches of the dispersion 
function; that is, multiple poles for each mode l . The coefficients plmb are determined by 
the spatial-temporal properties of cortical input, but the dominant (resonant) oscillation 
frequencies are given by the real parts of the complex frequencies plω when the 
imaginary parts are small or positive (minimally damped or unstable modes). 
 
Given our basic premise that instability is prevented in healthy brains by enhanced 
inhibitory actions, that is 0α ≠  in Eq (2.2), our study focuses on modes close to or above 
the linear instability level. Figure 6 shows plots of resonant frequencies lf  (Hz) and 
damping lγ (Hz) for 1,2,3,...l =  as a function of cortical excitation β  using parameters 
consistent with the closed cortical loop of length L in Sec 2.5. The effective sphere radius 
is / 2 9.6 cmR L π= = . As in the one-dimensional example, linear oscillations become 
lower in frequency, progressively less damped, and ultimately unstable ( )0lγ >  as 
background cortical excitation β increases, but in contrast to the one-dimensional 
solution, different mode instabilities occur at different values of β .  
 
 
2.7 Quasi-linear solutions to the one-dimensional model 
 
The model of Sec 2.5 has been extended to include weak nonlinear effects by employing 
the input-output Eq (2.2) with 0α ≠  (Nunez 2000; Nunez and Srinivasan 2006a). The 
procedure is to convert the basic integral equation (2.1), combined with Eq (2.2), to a 
nonlinear partial differential equation (PDE). Two approaches were followed to find 
oscillatory solutions: 1) Numerical solutions to the PDE were obtained for different 
parameter choices. 2) Semi-analytic methods were employed to approximate the PDE by 
an ordinary differential equation for each (approximately) uncoupled mode as outlined in 
appendix D. For weak to moderate linear instability and nonlinearity (roughly, 1 3β< <  
and 0.5α < ), the net results of these studies are summarized as follows: 1) The coupling 
between spatial modes is very weak or zero. 2) Each spatial mode is essentially a genuine 
limit cycle oscillation, thus the caveat "like" in our use of "limit cycle-like oscillations" 
may be omitted to first approximation. 3) Each mode frequency is a reasonable 
approximation to its equivalent linear oscillation frequency; that is, using the same β , 
but with 0α ≠ ) The main effect of nonlinearity is to limit the amplitude of linearly 
unstable oscillations to relative values approximated by Eq (3.1) below.     
 
 
3. Experimental Implications for EEG 
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Experimental connections to EEG and steady state visually evoked potentials (SSVEP) 
are outlined here; most are common to both the one dimensional cortical loop (Sec 2.5) 
and spherical models (Sec 2.6). Some are semi-quantitative, others only qualitative. The 
accuracy of our quasi-linear model predictions with local networks "turned off" is 
expected to be quite limited, but here we address several broader issues that may survive 
moderate nonlinearity and bottom-up network influences, indicated by the dashed arrow 
in fig. 1. Any of these experimental connections can have alternate explanations, for 
example, from one or more of the local or local/global models cited in Sec. 1 or from 
other properties of neural networks. A plausible conjecture for any complex system is 
that observed effects can easily have multiple causes; this cautionary point is especially 
applicable to brains. Thus, we claim only relationships not comprehensive explanations 
to complex physiological processes. Many questions remain, including the effects of 
cortico-cortical axon inhomogeneity and nonlinear cortical tissue responses discussed in 
Secs 2 and 4. Nevertheless, the following wide range of EEG studies seems to paint a 
compelling picture when interpreted in the context of physiologically-based brain theory, 
even if such theory is presented in the context of greatly oversimplified quasi-linear 
models.    
 
3.1 Temporal frequency range  
 
From the plausible parameters ranges given in the one-dimensional model (Sec 2.5), v/L 
 7-15 Hz. In the example discussed, the lowest oscillatory mode occurs for n = 2, 
yielding oscillations in the general range of alpha frequencies near the instability level 

1.β =  Predicted modes in the spherical model (Sec 2.6) also yield alpha band 
frequencies for the first overtone 2l =  over a range of cortical excitation levels. These 
predictions involve an unknown parameter, the cortical background excitation level β , 
which is conjectured to be under neuromodulatory control and vary widely in different 
brain states. Subject to the assumption that β can be in the right range to produce 
oscillatory activity in at least some brain states, predicted frequencies of the lowest 
modes are roughly in the EEG range. We cannot claim that this very approximate 
agreement, by itself, verifies the models. On the other hand, if the frequency estimates 
were clearly off by more than a order of magnitude, we might have discarded the models. 
In any case, strong nonlinear effects are expected to generally alter quasi-linear frequency 
predictions, but perhaps only moderately, depending on the strength of nonlinearity as 
indicated in appendix D and (Nunez 2000).   
 
We do not claim that axon propagation delays provide an exclusive time scale for alpha 
oscillations. Rather we suggest that the alpha band generally consists of both local 
(perhaps multiple thalamo-cortical networks in different cortical locations) and global 
field (or "global network") phenomena that are distinguished by different reactivity to 
tasks or stimuli and experimental spatial scale. For example, activation of motor cortex is 
associated with desynchronization of local alpha rhythms in both EEG (Pfurtscheller and 
Lopes da Silva 1999) and ECoG (Crone et al 1998) studies; however, this local 
"desynchronization" (typically meaning amplitude reduction) typically occurs with an 
intact global alpha (Andrew and Pfurtscheller 1997; Andrew 2000). A combination of 
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low and high resolution EEG applied to the same scalp data allows us to view neocortical 
dynamics at different spatial scales (both larger than the ECoG scale); thereby 
distinguishing global from more local alpha rhythms in scalp data (Nunez 1989, 2000; 
Nunez et al 2001; Nunez and Srinivasan 2006a; Buzsaki 2006). The existence of multiple 
human alpha rhythms was, in fact, firmly established long ago through extensive EEG 
and ECoG recordings, although some modern work has apparently failed to appreciate 
this history. Here is EEG pioneer Grey Walter's description of observed alpha band 
dynamics expressed in 1964 (Basar et al 1997): 
 
We have managed to check the alpha band rhythm with intra cerebral electrodes in the 
occipital-parietal cortex; in regions which are practically adjacent and almost congruent 
one finds a variety of alpha rhythms, some are blocked by opening and closing the eyes, 
some are not, some respond in some way to mental activity and some do not. What one 
can see on the scalp is a spatial average of and large number of components, and 
whether you see an alpha rhythm of a particular type or not depends on which 
component happens to be the most highly synchronized process over the largest 
superficial area; there are complex rhythms in everybody. 
 
3.2 Amplitude versus frequency   
 
Amplitude predictions require nonlinear models. In appendix D, a crude estimate of the 
relative amplitudes of oscillations in the one-dimensional model of Sec. 2.5 was derived 
from the quasi-linear partial differential equation (D3). For the case of weak to moderate 
nonlinearity, we obtained the following result, similar to that obtained in earlier studies 
with somewhat different methods (Nunez 2000; Nunez and Srinivasan 2006a)  
 

                            1amplitude     0.05 0.5,  1.1 3.0 β α β
α
−

∝ ≤ ≤ ≤ ≤                    (3.1)          

 
In fairness, we note that local limit cycle modes may also exhibit increased local network 
source amplitudes as frequency decreases. We must distinguish EEG amplitudes from 
synaptic action amplitudes ( , )H tr  because EEG amplitudes depend strongly on cortical 
source synchrony over regions close to electrodes (Pfurtscheller and Lopes da Silva 1999; 
Nunez and Srinivasan 2006a). Synchrony could change with cortical excitation level 
independent of synaptic action (or source) amplitudes.  For these reasons, we only 
tentatively associate larger β with larger EEG amplitudes. The linear models of Sec 2.5 
and 2.6 predict lower frequencies for all modes as β increases; thus these models imply 
an inverse relationship between EEG amplitude and frequency, one of the most robust of 
all EEG properties across a broad range of cognitive states (Barlow 1993; Nunez 1995).  
 
3.3 Tuning the brain 
 
As the parameter β (background cortical excitability) increases, each predicted mode 
frequency is reduced and ultimately becomes non-oscillatory. At the same time, new high 
frequency modes become excited. Similar behavior has been observed in the halothane 
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anesthesia rhythm. Deeper anesthesia, which could result in higher cortical excitability, 
causes lower frequencies and larger amplitudes. That is, halothane anesthesia "tunes" the 
brain to produce global oscillations roughly in the 4 to 16 Hz range.  As the dominant 
mode frequency decreases, new higher frequency oscillations appear (Nunez 1974b, 
1981; Nunez and Srinivasan 2006a).  
 
Stage 1 sleep typically involves EEG transitions from alpha (8-13 Hz) to more prominent 
theta (4-7 Hz). Deep sleep is dominated by large amplitude delta rhythms (< 2 Hz), but 
various sleep stages exhibit superimposed faster oscillations in the alpha and beta bands 
(8-20 Hz). This observation is consistent with increased β as sleep deepens, thereby 
lowering at least some of the normal alpha frequencies and, at the same time, allowing 
new higher modes, which are strongly damped for smaller β , to reached their zero 
damping levels. In one study using 256 electrodes, sleep slow oscillations consisted of 
traveling waves that sweep the human cerebral cortex up to once per second (Massimini 
et al 2004). Each slow oscillation exhibited a definite site of origin and direction of 
propagation.  Of course, observed theta and delta rhythms at the scalp could be due to 
combinations of global and local networks, the latter influenced by top-down global 
dynamics, including traveling delta sleep waves.  
 
3.4 Effect of cortico-cortical axon propagation speeds  
 
In global models, the faster the propagation, the faster the global mode frequencies. If all 
parameters except cortico-cortical propagation speed v are fixed, brains with faster speeds 
should produce higher global frequencies. Axon velocity depends on axon diameter and 
myelination (Waxman and Bennett 1972). Maturation of neocortex during childhood and 
adolescence involves substantial increases in white-matter volume , including increased 
myelination and axon diameters (Paus et al 2001; Hagmann et al 2010). A posterior 
rhythm of about 4 Hz develops in babies in the first few months; it attenuates with eye 
closure and is believed to be the precursor of the global adult alpha rhythm (Nunez 1995). 
Frequency gradually increases until an adult-like 10-Hz rhythm is achieved at about age 
ten, consistent with global model predictions.   
 
The suggestion that cortico-cortical axon maturation strongly influences alpha rhythms is 
supported by multiple studies showing progressive coherence increases across the scalp 
with children's increasing age (Thatcher et al 1987). In one study, alpha rhythms were 
recorded with 128 electrodes in children aged  6 to 11 and young adults (Srinivasan 
1999). A high resolution (spline-Laplacian) algorithm was employed to obtain power and 
coherence estimates at a second scale smaller than the raw EEG, essentially applying a 
high pass spatial filter to the same data.  Power and coherence characterized the spatial 
structures of the alpha rhythm at the two distinct spatial scales of raw EEG and 
Laplacian.  In adults, the alpha rhythm was characterized by high coherence between 
distant electrodes in both measures. The children had reduced anterior power and reduced 
coherence of raw EEG between anterior and posterior electrodes at the peak alpha 
frequency (in comparison to adults). By contrast, the children's Laplacian alpha rhythm 
showed much higher power than adults at both anterior and posterior electrodes, but was 
weakly correlated across the scalp. In other words, children produced strong local alpha 
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and, at the same time, weak global alpha compared to adults, apparently due to immature 
axon myelination.  
 
The proposed relationship between cortico-cortical axon myelination, propagation speed, 
and EEG is also consistent with aging studies. Old age (> 60-70) is associated with a 
substantial decline in myelinated fibers (Meier et al 1992; Guttmann et al 1998; Walhovd 
et al 2005), reduction in peak alpha frequency, reduction in % of alpha epochs, increased 
alpha bandwidths (Chatrian and Lairy 1976, Nunez et al 1978), and reduced working 
memory performance (Clark et al 2004).  
 
3.5 Effect of brain size  
 
If all other parameters are fixed, brains with longer cortico-cortical axons are predicted to 
produce lower frequencies simply because of longer propagation delays. To the extent 
that larger brains contain longer axons of the same diameter and myelination 
(remembering that speed increases with diameter and myelination), we can postulate an 
inverse relationship between head size and peak alpha frequency. Children must be 
excluded from such studies because axon myelination increases propagation speed by 
factors of perhaps 5 to 10 (Waxman and Bennett 1972). By contrast, the brain weight of 5 
year old child is about 90% of its adult weight, implying that the linear scale factor (e.g., 
the parameter L in Eq 2.8) is 97% of the adult value (Blinkov and Glezer 1968; Dekaban 
1978). Thus, the effect of maturating myelination (increasing frequency) is expected 
dominate any small size effect (lowering frequency).  
 
We are aware of three independent studies of alpha frequency versus head size in adults. 
Two such studies (Nunez et al 1978; Posthuma et al 2001) found the predicted negative 
correlation (p = 0.01 to 0.02 and p = 0.003, respectively). By contrast, Valdés-Hernández 
et al (2009) found only a very small negative correlation between peak alpha frequency 
and cortical surface area that failed the significance test (p > 0.05). This group did, 
however, find statistically significant relations between several aspects of white matter 
architecture observed with MRI and peak alpha frequency. Given that the alpha band 
apparently consists of both local network activity and global fields (Nunez and Srinivasan 
2006a), we have suggested that future work in this direction distinguish these alpha 
phenomena, for example, by focusing on alpha peaks with high anterior-posterior 
coherence that are more likely to be globally generated (Nunez 2011).  
 
3.6 Traveling waves 
  
A number of human studies of scalp potentials have found traveling waves in both 
SSVEP (steady state visually evoked potentials) and spontaneous EEG with propagation 
speeds approximately in the 1 to 10 m/sec range; that is, roughly in the range of cortico-
cortical axon propagation speeds. Our purpose in this section is to employ both volume 
conduction considerations (Sec 1.6) and global dynamic models (Secs 2.5 and 2.6) to:  1) 
Interpret existing studies and 2) Suggest designs for future experimental work.  
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In many local and global models subcortical inputs to cortex are expected to create 
epicenters for wave propagation away from such centers.  In animal experiments cortical 
surface propagation speeds in the 0.1 to 0.3 m/sec have been reported for alpha band 
activity (Lopes da Silva and Storm van Leeuwen 1978; Wright and Sergejew 1991). 
These are small scale phenomena involving mm scale wavelengths much too short to be 
recorded on the scalp because of spatial filtering by volume conduction as in Eq (1.1). 
This small scale propagation may be due to intra-cortical and/or thalamic PSP delays and 
possibly non-myelinated intra-cortical axon delays (Nunez 1995).   
 
In the case of much longer wavelengths (  5-30 cm) recorded from human scalp, the 
locations of cortical epicenters may be visual cortex in the case of SSVEP and possibly 
random locations (e.g. spatial-temporal white noise) for EEG. From an experimental 
viewpoint we might expect to see short periods when waves travel in some consistent 
direction, other periods when traveling waves combine (interfere) to produce standing 
waves, and many periods with mixed traveling and standing waves due to partial 
interference. Still other periods may be dominated by local networks that act to erase 
most wave activity.   
 
Here we outline issues using the one dimensional model of Sec 2.5 as our example since 
most experimental studies are based on one dimensional anterior-posterior propagation. 
Predictions of this crude model are not expected to match experiments closely because: 
We anticipate substantial nonlinear behavior in actual brain waves, and we have ignored 
possible network influences; nevertheless, some general issues may be valid. First, we 
note that phase velocities are not predicted to exactly equal axon speeds v ; that is, at least 
two kinds of "propagation velocity," phase velocity pv  and group velocity gv , typically 
characterize most kinds of traveling waves. This duality occurs because genuine waves 
typically travel in groups (or "packets") composed of multiple components with 
somewhat different wavelengths and phase velocities. As a result such wave packets 
distort and spread out (disperse) as they propagate. The phase velocity pnv  (cm/sec) of 
each wave component n  is related to its frequency  (Hz)nf  and wavelength  (cm)nd  by 
 
                                                          pn n nv f d=                                                     (3.2) 
 
Note that wavelengths are not restricted by boundary conditions for traveling waves that 
have not yet combined to form standing waves. Water waves provide a useful example 
because we can see them and, like EEG waves, they have different properties at different 
spatial scales. Phase velocities of small scale water waves (ripples due to surface tension) 
are lower than their group velocities. By contrast, phase velocities of intermediate and 
large scale wind-driven waves are larger than their group velocities (Nunez 2000). Thus, 
individual wave components can move faster or slower than the group causing distortion 
of the wave packet's spatial shape. We can picture this phenomenon as similar to a group 
of marathon runners running at almost the same speed, but some a little faster than others. 
The simple linear model of Sec. 2.5 predicts the following relationship between axon 
speed v , phase velocity and group velocity for all modes: 
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                                                           2
pn gnv v v=                                                     (3.3)                   

 
Group velocity gnv is essentially the speed of the "center of mass" of a wave packet 
containing components with wavelengths typically distributed over a narrow range. If this 
range is too large, wave packet distortion may make it impossible to identify any 
unambiguous group velocity. After some delay from their points of origin, waves must 
either be attenuated or combined by interference as forced by global boundary conditions. 
In the latter case only discrete wavelengths remain, that is, standing waves are produced. 
Using the parameter choices in Sec. 2.5 for the "alpha-like" mode 2n =  with excitation 
level 1β =  , predicted phase and group velocities are 2 0.7pv v=  and 2 1.4gv v= . With 
higher modes ( 2n > , shorter wavelengths) the two velocities are more nearly equal as 
shown in fig. 7.  As excitation level β increases, mode frequencies decrease and phase 
and group velocities become even more unequal. The wavelength range in the plot 
matches possible scalp estimates, limited at the short end by electrode density and 
volume conduction ( 5 10−  cm) and the long end by electrode array length on the scalp 
( 25 30 cm) .  
 
Estimates of EEG and SSVEP propagation speeds and other wave properties have 
employed several approaches: 1) Measurement of statistically significant progressive 
phase shifts across the scalp (Hughes et al 1995; Nunez 1995; Silberstein 1995a; Burkitt 
et al 2000; Nunez and Srinivasan 2006a; Klimesch et al 2007; Patten et al 2011).  2) 
Fourier transforms in one surface dimension using the [ ]nExp jk x  as basis functions 
(Nunez 1974b; Nunez 1981; Srinivasan et al 2006a). 3) Generalized Fourier transforms in 
two surface dimensions using the spherical harmonics ( )lmY Ω  as basis functions 
(Wingeier et al 2001; Wingeier 2004; Nunez and Srinivasan 2006a). 4) Other methods 
(Massimini et al 2004; Nunez and Srinivasan 2006a).  
 
Experimental estimates face several challenges due to volume conduction distortion, 
reference electrode issues, and the unknown properties of genuine brain waves. 
Reference effects are expected to overestimate propagation velocities; close bipolar 
electrodes generally do better, but may be biased toward shorter wavelengths (Nunez 
1974b; Silberstein 1995; Burkitt et al. 2000). Fourier transforms could possibly bias 
propagation velocities towards the slow end because the longest waves, which travel 
fastest for a fixed frequency band, may be poorly resolved due to limited length of the 
electrode array. On the other hand, phase shift estimates along linear arrays may 
overestimate velocities if they are biased towards longer wavelengths (Srinivasan et al 
2006). We emphasize that none of these approaches is generally inaccurate; rather they 
tend to emphasize different wavelengths propagating inside wave packets. 
 
Here we cite four independent studies of EEG propagation velocity, three of alpha 
rhythm and one of sleep delta oscillations. When phase velocities are estimated from 
progressive phase shifts, typically along the anterior-posterior scalp of each hemisphere, 
the estimates are checked for statistical significance with surrogate data or simply by 
scrambling electrode positions using the same phase estimates. Alternately, both phase 
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and group velocities may be estimated with spatial-temporal Fourier transforms. Speeds 
are expressed here with respect to scalp, but because of cortical folding, equivalent 
cortical surface speeds are about twice scalp speeds. The appropriate speed comparison to 
global models depends on the geometry of cortico-cortical axon paths that bypass cortical 
folds; thus, one cannot claim agreement with theory closer than a factor of two for this 
reason alone.  
 
Alpha phase velocity estimates along the scalp were obtained by Nunez (1995, 3 to 7 
m/sec) and Patten et al (2011, 6.5± 0.9 m/sec). Note that the model of Sec 2.5 predicts 
that the lowest undamped mode is the first overtone ( 2n = ) with a wavelength of about 
30 cm. From Eq (3.2) , a 10 Hz alpha wave is predicted to have a phase velocity of 3 
m/sec, but again such estimate can be no closer than a factor of two because of axon path 
uncertainty around cortical folds. Estimates of alpha wave group velocity based on whole 
head recordings with 131 electrodes in five subjects report scalp speeds in the 3 to 5 
m/sec range (Wingeier 2004; Nunez and Srinivasan 2006a). Note that EEG group 
velocities can exist only if increasing temporal frequency through and above the alpha 
band occurs with increasing spatial frequency. Thus, any positive test for the existence of 
a robust positive group velocity supports the presence of traveling waves in the data.  
 
Finally, we note that delta oscillations in sleep consist of traveling waves with 
propagation speeds reported to vary over the 1 to 7 m/sec range (Massimini et al 2004). 
We do not know how these latter methods might have weighted different wavelengths in 
wave packets, but generally, speed variations over time are predicted by global models to 
be associated with changes in wavelength distributions within wave packets. Such 
distributions could be determined by the spatial properties of cortical input; broad 
synchronous input being associated with longer wavelengths (Nunez 1995). These effects 
are expected before a few surviving wavelengths are later selected by boundary 
conditions. We note also that the model of Sec 2.5 predicts large differences between 
phase and group velocities for delta range oscillations, perhaps adding to "propagation 
speed" ambiguity.  
 
3.7 Traveling steady state visually evoked potential (SSVEP) waves  
 
The global models of this paper suggest that SSVEP speeds should be in the same general 
range as the alpha wave speed estimates, but differ somewhat due to different 
distributions of wavelengths in wave packets. Whereas global alpha rhythms appear to 
have substantial power near 30 cm wavelengths ( 2n =  in the one-dimensional model), 
wavelength distributions of SSVEPs might have more relative power at shorter 
wavelengths, expected because of the relatively small size of the primary visual cortex 
input region (Nunez 1995, Nunez and Srinivasan 2006a,b). In this case, we might expect 
estimated SSVEP wave speeds to be somewhat slower than alpha wave speeds. In one 
study based on progressive phase shifts in bipolar recordings, scalp phase velocities of 2-
6 m/sec were obtained (Silberstein 1995a; Burkitt et al 2000). In another study based on 
Fourier transforms, typical scalp phase velocities of 1-3 m/sec were found (Srinivasan et 
al 2006).     
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Several evoked potential studies suggest relations between cognitive functions and 
traveling waves; for example, some view the waves as a means of communication 
between distant brain areas, thereby impacting working memory, or serving other 
cognitive functions (Hughes et al 1995; Ding et al 2006; Klimesch et al 2007; Hanslmayr 
et al 2007). We offer no specific mechanisms that might link the waves to cognition; 
however, it seems apparent that waves and networks interact dynamically in some 
manner thereby altering both phenomena and perhaps facilitating binding of disparate 
networks (Nunez 2010) or otherwise effecting the precision of synaptic input and 
subsequent summation in critical target neurons (Fields 2008). If cognition is associated 
with networks, it follows that both network and wave (or other global synaptic field 
activity) will be closely associated with the integration of cognitive events, constrained 
by fixed anatomy and physiology, including axon connection structure, axon speeds, and 
global boundary conditions. 
 
3.8 Standing EEG and SSVEP waves  
 
Most SSVEP waves travel in the posterior to anterior direction away from primary visual 
cortex (Silberstein 1995a; Burkitt et al 2000; Srinivasan et al 2006), whereas alpha wave 
packets travel about half the time in either direction (Nunez 1995; Patten et al 2011). In 
Nunez (1995) waves in about 8% of all epochs traveled in each direction, a figure that 
depends weakly on the severity of statistical tests. What happens with the other 84% of 
epochs? With multiple wave packets traveling in any confined space, traveling waves 
must either attenuate (damp out) or combine (interfere) with other traveling waves to 
form standing waves. The suggested interference phenomenon for brain waves may occur 
when a cortical tissue mass (e.g. column) with elevated excitatory synaptic action due to 
one wave packet receives elevated inhibitory input from another wave packet, resulting in 
a partial cancellation effect as detailed in our global models.  
 
In one SSVEP study (Silberstein 1995a; Burkitt et al 2000) two kinds of stimuli were 
presented: A checkerboard or uniform flicker driven at the subject's peak alpha 
frequency. Checkerboard patterns were found to be more likely to produce progressive 
phase shifts associated with posterior-to-anterior traveling waves. By contrast, the 
unstructured stimulus tended to produce an abrupt phase change in central regions of the 
array, more consistent with standing waves. A number of subjects switched their phase 
topography with stimulus change.   
 
In other studies, low frequency (< 20 Hz) SSVEPs elicit resonant responses in large-scale 
networks whose spatial distribution depends strongly on the input temporal frequency 
(Silberstein 1995; Ding et al 2006; Srinivasan et al 2006). That is, the spatial patterns of 
SSVEP, far away from visual cortex are sensitive to small (  1 Hz) changes in input 
frequency, suggesting global rather than local (primary visual system) resonance. Most 
convincingly, robust frontal responses are easily recorded only for input frequencies in 
selective parts of the alpha band, possibly revealing standing waves with amplitude peaks 
near occipital and frontal cortex. Raw (unprocessed) and high resolution SSVEPs, 
obtained with 128 channel recordings, reveal that both large scale (10-25 cm) and smaller 
scale (2-5 cm) cortical spatial structures are sensitive functions of input frequency 
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(Srinivasan et al 2006). Maximum responses in frontal cortex all occur within the alpha 
band at both scales, but at different alpha frequencies, providing still more evidence for 
simultaneous, but distinct, local and global alpha processes with resonance peaks 
typically separated by 1-3 Hz. The large scale responses appear to be combinations of 
traveling and standing waves; small scale responses may indicate local networks.  
                               
3.9 Temporal and spatial frequencies are related  
 
In the proposed global wave framework we generally expect to observe higher temporal 
frequencies associated with higher spatial frequencies (shorter wavelengths) above the 
fundamental mode. This is a basic feature of nearly all wave phenomena, one of the 
defining properties, at least of linear “waves.” Without this property no robust and 
positive group velocity is expected in any spatial-temporal dynamic process. The specific 
relationship between spatial and temporal frequencies, called the dispersion relation, is a 
property only of the wave medium; Eq (2.8) is an example. Such relationship has been 
reported for EEG dynamics at three different laboratories using different estimation 
methods. In (Nunez 1974b) crude spatial-temporal Fourier transforms based on 8 or 16 
electrodes (maximum available at the time) along the midline indicated that the lower 
half of the alpha band had consistently lower spatial frequencies than the upper half, 
consistent with the alpha wave packet conjecture.   
 
A separate study used a one-dimensional array around the head circumference (Shaw 
1991, reviewed by Nunez 1995). This array mixed activity from the two hemispheres 
preventing phase velocity estimates. However, it did allow scalp power estimates for long 
wavelengths (  60 cm). Recorded EEG power spectra were fitted to spatial wavelength d 
and frequency f according to 
 
                                                         ( )Power q fd∝                                                    (3.4)               
 
 
In both eyes closed and eyes open resting EEG, the exponent ( )q f ranged from about 1.5 
to 4 over the frequency range 0 30f< <  Hz. Since ( ) 0q f >  for all frequencies, scalp 
power consistently fell off at shorter wavelengths as expected due only to volume 
conduction. Volume conduction is independent of EEG range frequencies (Cooper et al 
1965; Nunez 1995; Winter et al 2007), yet the fall-off of power at shorter wavelengths 
occurred most sharply with a maximum ( ) 4q f   near 0 10 Hzf  and became 
progressively less sharp at higher alpha and beta frequencies.  The apparent explanation 
is that the observed scalp power fall-off at shorter wavelengths was due to a combination 
of volume conduction and source dynamics. That is, the underlying cortical dynamics 
involves peak alpha oscillations with the longest wavelengths, and higher alpha and beta 
temporal frequencies tend to be associated with higher spatial frequencies (shorter 
wavelengths), as expected with genuine wave phenomena.  
 
This association of temporal to spatial frequencies was supported in a separate analysis  
(Shaw 1991). Spatially aliased power was estimated as a function of frequency by 
comparing power obtained with 2 and 5 cm electrode spacing. That is, two samples per 
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wavelength are required to avoid spatial aliasing just as in the time domain. In the four 
subjects studied, aliased power showed a minimum at the peak alpha frequency f0 in both 
eyes open and eyes closed states. Aliased power increased monotonically for higher alpha 
and beta frequencies  consistent with the existence of a dispersion relation for dynamic 
activity above f0.  
 
In still another study, two dimensional spatial spectra were obtained from a 131-channel 
array (Wingeier et al. 2001, Wingeier 2004). Data were Fourier transformed in time and 
the spatial structure was fit to series of spherical harmonic functions ( )lmY Ω  
corresponding to progressively higher spatial frequencies as in Eq (1.1). Frequency-
wavelength power structure was estimated for (1 40 Hz and 1,6)f l< < =  for EEG and 
SSVEP. Above the peak alpha frequency 0f  , greater relative power consistently 
occurred in low temporal and spatial frequencies ( 1 2)l −  and high temporal and spatial 
frequencies ( 4 6)l − , again consistent with the existence of a dispersion relation with 
estimated scalp group velocity of 3-5 m/sec for dynamic activity above f0. 
 
 
3.10 Long range alpha coherence can be high and varies with brain state 
 
If EEG were composed simply of linear standing waves with no active local networks, 
scalp topography could be similar to fig. 2a or 2b, with zero phase lag between selective 
regions. Coherence between cortical locations could be close to 1, determined partly by 
spatial-temporal cortical input properties. At the other extreme, a cortex dominated by 
uncorrelated local networks would exhibit scalp coherence close to zero provided 
reference and volume conduction distortions were removed. Here we emphasize that 
EEG dynamic behavior can apparently approach either of these limiting cases depending 
on brain state. We suggest a conceptual framework in which local networks are generally 
embedded in global fields (or "global networks") as indicated below. 
 
One important application of high resolution EEG is to provide more accurate estimates 
of scalp coherence patterns, which provide important measures of functional segregation 
and integration between cortical regions; such measures vary substantially across 
cognitive tasks. Before the 1990s some EEG scientists and animal physiologists 
suspected that the observed high scalp coherence (e.g. 0.6-0.9) over large distances (> 10 
to 20 cm) did not reflect cortical source coherence, but resulted only from volume 
conduction. This view was based partly on the fast fall off of coherence (typically over 
less than 1 cm) recorded from animal cortex with mm scale electrodes. But, this volume 
conduction interpretation ignores the fact that high human scalp coherence is mostly 
confined to narrow frequency bands (typically the lower range of alpha frequencies), and 
volume conduction is essentially independent of frequency. Furthermore, alpha 
coherence is easily manipulated by eye opening or cognitive tasks having no connection 
to volume conduction.  
 
This misunderstanding of scalp coherence also involved a failure to appreciate that the 
dynamic variables that characterize complex systems are generally expected to be scale-
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sensitive (Nunez 1995, 2010; Nunez et al. 1997, 2001; Nunez and Srinivasan 2010; 
Sporns 2011). Thus, cortical coherence patterns estimated with mm scale (mesoscopic) 
cortical electrodes are not generally expected to mirror (macroscopic) scalp coherence 
between the same cortical regions as suggested in Sec 1.6. It has been shown that spline-
Laplacian and dura image (two independent high resolution approaches) coherence 
estimates are typically conservative; that is, they tend to underestimate cortical source 
coherence by filtering out the very low spatial frequencies, which may only partly result 
from volume conduction (Srinivasan et al. 1998; Nunez and Srinivasan 2006a). Note also 
that large (0.5-0.9) and narrow (  1 Hz) alpha band coherence at 10 to 20 cm scalp 
separations is also easily obtained with (close) bipolar recordings that substantially 
minimize volume conduction effects (Nunez 1995).  
 
The observation that the smaller local networks, global systems and intermediate scale 
systems exhibit distinct properties emphasizes the importance of multi-scale coherence 
measures. To approach this goal, combined low and high resolution EEG can provide 
complementary coherence estimates that are maximally sensitive to large (  5-10 cm) 
and intermediate (  2-3 cm) spatial scale source regions, respectively  (Nunez 1995; 
Nunez et al 1997, 1999; Nunez and Srinivasan 2006a). Such two-scale coherence patterns 
then provide distinct estimates of local versus global processes (Pfurtscheller and Neuper 
1992; Andrew and Pfurtscheller 1997; Srinivasan 1999; Srinivasan et al 1998, 1999, 
2007; Andrew 2000; Silberstein et al 2003, 2004).  
 
 
4. Conclusions 
 
This paper reviews three idealized global models suggesting large scale oscillatory 
dynamic behaviors that depend on long axon propagation delays and background level of 
cortical excitability. Excitation level is quantified by the single nondimensional 
parameter β , which determines the fraction of new action potentials produced in 
mesoscopic (mm to cm scale) cortical tissue masses for each fractional increase in 
excitatory synaptic input. Cortical excitation level is believed due to neuromodulatory 
control on long time scales in addition to inhibitory and the excitatory synaptic action 
associated with the shorter axon systems; delays in the shorter axons are neglected to first 
approximation here. Linear and quasi-linear models are emphasized to keep the 
mathematics not only tractable, but easily interpretable in the context of EEG 
experiments. In all three linear models, this idealization leads to the prediction of damped 
oscillations for small β and various linear instabilities, including unstable oscillations, 
for large β .  
 
We doubt that such linear processes actually occur often (if ever) in real brains. Rather, 
we conjecture that brains normally operate in nonlinear ranges where the linear models 
break down. This may occur in healthy brains if excessive active excitatory synapses in a 
tissue mass enlist additional inhibitory feedback, either from contiguous cortex or 
thalamus, thereby preventing runaway excitation associated with epilepsy. In other 
words, linear instabilities may result in stable "limit cycle-like" global modes similar to 
the simple limit cycles predicted by local models. This conjecture is based on the idea 
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that natural selection has favored healthy brains, in this case implying that linear 
instability normally results in stable oscillatory modes rather than epilepsy. This view 
differs from many physics and engineering studies of much simpler systems that focus on 
weakly damped waves. The postulated enhanced inhibition was approximately quantified 
by the nondimensional parameter α multiplying the nonlinear term in Eq (2.2), producing 
quasi-linear models in which brain state is determined by both parameters  and α β  (Jirsa 
and Haken 1997; Nunez 2000). In the limiting case of weak nonlinearity with negligible 
mode coupling in the one-dimensional model, each spatial mode can undergo its own 
uncoupled oscillation; that is, the "limit cycle-like" modes become genuine limit cycles. 
The predicted EEG is then given by a linear sum of spatial modes, Eq (D4), as in the 
linear case.   
 
None of these global models are expected to closely represent accurate anatomy, in part 
because they ignore specificity of cortico-cortical connections believed to form parts of 
functional neural networks. Rather, the models are chosen to produce simple analytic 
solutions that are easy to interpret and compare with experimental data, especially the 
large scale scalp potentials recorded in states with small to moderate (bottom-up) local 
network influences on the global dynamics as indicated in fig. 1 by the dashed arrow. The 
three global models outlined here attempt to bracket the ranges of several kinds of 
cortico-cortical axon distributions by examining simple limiting cases of the 
inhomogeneous and anisotropic systems expected in actual brains. One approach to 
cortico-cortical inhomogeneity is to combine the models of Sec. 2.4 and 2.5 by assuming 
homogeneous connections superimposed on a single point-to-point connection, similar to 
the study by Jirsa (2009).  
 
The global models, viewed together, suggest that recordable global oscillatory behavior 
(limit-cycle like modes) in the general range of EEG frequencies (roughly 1 to 40 Hz) 
may occur in neocortical/white matter systems provided three conditions are met: 1) 
Background cortical excitability (variable) is sufficiently high. While global oscillations 
may be clearly evident in only a minority of brain states, the general top-down influence 
of global dynamics on local networks may be pervasive. 2) The strength of long cortico-
cortical axon systems (fixed) is sufficiently high, as determined by axon numbers and 
numbers of excitatory synapses per axon. 3) The bottom-up influence of local networks 
on the global dynamic field (variable) is sufficiently weak, as may occur in some 
epileptic and anesthesia states as well as the (resting, eyes closed) alpha state. When this 
third condition is violated in cognitive task data, global, robust oscillations are still 
predicted by several local/global models cited in Sec. 1 (reviewed in Nunez, 1995, 2000; 
Nunez and Srinivasan 2006a; Jirsa and McIntosh 2007; Moran et al 2013). These general 
qualitative predictions appear to be consistent with a wide range of EEG observations as 
discussed in the experimental section.   
 
In a recently studied one-dimensional global model system with more realistic 
heterogeneous cortico-cortical axon connections, the spatially periodic oscillatory modes 
associated with homogeneous axon connection systems appear to be absent (Pinotsis et al 
2013), although the associated influences on oscillatory temporal dynamics are unclear. 
Other related issues that are likely to be studied for some time in the future include the 
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effects of two versus one spatial cortical dimension and the spatial scale of the connection 
matrix. In particular, we have suggested that multiscale connection matrices may be 
required to model dynamic behavior recorded at multiple scales. Moreover, in theory, one 
can employ mm scale heterogeneous axon connection systems superimposed on 2-5 cm 
scale homogeneous systems to predict EEG behaviors at the large scale.  
 
The basic question of relationships between anatomical and functional connectivity 
involves the spatial and temporal scales at which all measures are obtained. Axon 
connectivity may be estimated from the injection of tracers transported along cell 
projections in the living brains of animals (Kotter 2007). In humans, structural 
connectivity is accessible by postmortem examination of dissected tissue (Krieg 1963, 
1973) or noninvasive brain imaging methods like DTI. In DTI, MRI is used to measure 
the preferred direction of water diffusion in each brain voxel, thereby providing estimates 
of major white matter tracks at the 1 mm scale. This approach is based on the idea that 
the direction of fastest diffusion indicates voxel fiber orientation, where here the label 
"fiber" indicates bundles of many parallel axons. While DTI images demonstrate 
impressive technology, they currently fall far short of the resolution required to view 
most individual axons. Diameter histograms of human cortico-cortical axons are peaked 
in the 1 mµ  range (Tomasch 1954; Bishop and Smith 1964; Blinkov and Glezer 1968); 
that is, about 1000 times smaller than the 1 mm resolution of DTI. Human white matter 
actually contains about 1010 cortico-cortical axons (Braitenberg 1978), far more than the 
number of tracts revealed by DTI images. Thus comprehensive maps of axon 
connectivity at multiple mesoscopic and macroscopic scales may be "years away" as 
argued  by Sporns 2011. 
 
We have further addressed the issue of heterogeneous systems by considering models 
containing both homogeneous and heterogeneous connection systems as given by Eqs 
(2.7) and (2.11). In one idealized case the heterogeneous systems are all short range 
(negligible axon delays) and at least one homogeneous system is long range. In this case 
the heterogeneous short range systems only add to the background excitability (parameter 
β ) and the oscillatory solutions Eqs (2.8) and (2.14) remain intact (Nunez 1995; Nunez 
and Srinivasan 2006a). Also, the simple point-to-point heterogeneous system yields 
oscillatory solutions given by Eq (2.6). These models suggest that the question of 
oscillations in genuine heterogeneous/homogeneous systems is a quantitative one 
depending partly on several poorly known details of fixed anatomy including lengths and 
relative strengths of various kinds of axon connections. While much further work is 
required to access the accuracy of this approach, the experimental data outlined in Sec 3 
provides reason to affirm its usefulness.  
 
We further suggest that functional connectivity can vary substantially from that implied 
by fixed axon connections. Cortical dynamics revealed with EEG offers a wide range of 
dynamic behaviors in its power spectra and coherence structure. Long range (> 15-20 cm) 
coherence in narrow alpha sub-bands can be high (e.g. 0.5 to 0.9) in both raw and high 
resolution EEG or SSVEP and exhibits robust changes with eye opening and mental tasks 
(Nunez 1995; Silberstein et al 2001, 2003, 2004; Srinivasan et al 1999, Ding et al 2006). 
High coherence (at large scales) between the occipital cortex of one hemisphere to frontal 
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cortex of the contralateral hemisphere can occur in the alpha band, even though direct 
axon connections between these regions are unlikely (Nunez 1995). The implication is 
that functional interactions between cortical regions can perhaps be turned on and off 
more quickly, partly independent of fixed connections.  
 
One such possible mechanism of binding local networks into large-scale functional 
systems is "binding by resonance," a generalization of Singer's "binding by synchrony" 
(Singer 1993; Hoppensteadt and Izhikevich 1998; Izhikevich 1999; Roopun et al 2008; 
Nunez and Srinivasan 2010; Nunez 2010). The spatial-temporal resonance structure 
proposed here is functionally useful because it allows spatially overlapping neurons to be 
part of distinct functional networks, where the functional separation is due to the 
underlying dynamics.  In other words large scale networks that operate in different 
frequency bands can be kept segregated from each other even when they occupy 
overlapping space in the brain. This is also a natural extension of Singer’s binding 
hypothesis, which postulates that distinct percepts must be kept segregated as distinct 
oscillations. This type of dynamic segregation is observed in SSVEP studies of attention 
where functionally distinct networks operate at different frequencies in the same tissue 
(Ding et al 1996; Bridwell and Srinivasan 2012).  
  
Another point supporting the robust production of global oscillations due to axon delays 
is that EEG and SSVEP experiments demonstrate that the phenomena of traveling 
cortical waves is robust in both waking and sleeping states. In a confined system like the 
cortex-white matter system with a closed topology, these waves must either damp out or 
interfere to produce standing waves with remote regions possibly exhibiting zero phase 
lag in their dynamic structures in the absence of interconnections as indicated in fig 2b.  
Accurate measurements of wave damping have not, to our knowledge, been reported, 
partly because EEG typically involves a mixture of local and global dynamics and partly 
because of alpha band non-stationarity, but wave damping appears to be small or 
moderate in many studies (Nunez 2011). Finally, we have reported direct evidence for 
standing waves in Sec. 3. We suggest that such periodic spatial structure is associated 
with temporal oscillations even though many specific aspects of the quasi-linear models 
based mainly on homogeneous connections are probably wrong.  
 
These issues associated with global systems of cortico-cortical axons are likely to occupy 
experimentalists and theoreticians well into the future as they seem central to the broader 
issues of top-down network binding and brain disease. Given the wide range of 
psychiatric and neurodevelopmental disorders now associated with white matter defects 
(Fields 2008), multiple measures of functional connectivity obtained with fMRI, EEG, 
and so forth should prove useful in clinical studies. In particular, the proposed close 
association of global EEG dynamics to cortico-cortical axon delays provides a theoretical 
basis for relating white matter defects to spatial patterns of EEG oscillations, including 
narrow band (  1 Hz) measures of multi-scale functional connectivity, e.g., coherence 
estimated from both low and high resolution EEG.   
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Appendix A. Regional resonances: One-dimensional theory 
 
Consider axon propagation in a one-dimensional closed loop of cortex of circumference L  
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If axons entering arbitrary location x originate only at location ax , and there is only a 
single axon speed v , the axon distribution function may be expressed as  
 
                                   ( )1 1 1 1( , , ) ( )ax x v x x v vρδ δℜ = − −                                           (A2) 
 
ρ  is the number of synapse per axon (assumed constant) entering the arbitrary cortical 
location x (in this case all axons originate at ax ). Normalization requires 
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Substitution of Eq (A2) into Eq (A1) yields 
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The regional time delay is ( ) ax x
x

v
τ

−
=  . Evaluate  Eq (A4) at bx x=  to obtain 

 
                                 0( , ) ( , ) [ , ( )]b b a bH x t H x t G x t xρ τ= + −                                     (A5)                                                            
 
Equation (A5) yields the synaptic action at location bx  due to action potentials that 
originate at ax . Now we consider the opposite case where action potentials originate at 

bx  and terminate at ax . The derivation is identical with a and b interchanged; that is 
 
                                    0( , ) ( , ) [ , ( )]a a b aH x t H x t G x t xρ τ= + −                                   (A6) 
 
Thus, we now have 2 equations in the 4 unknowns ( , )aH x t , ( , )bH x t , ( , )aG x t , ( , )bG x t ; 2 
more are needed to find a solution. Define the temporal Fourier transform 
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Thus, the Fourier transformed versions of Eqs (A5) and (A6) are 
 
                               ( ) [ ]0( , ) ( , ) , exp ( )b b a aH x H x G x j xω ω ρ ω ωτ= + −                      (A8)                                             
 
                                ( ) [ ]0( , ) ( , ) , exp ( )a a b bH x H x G x j xω ω ρ ω ωτ= + −                     (A9) 
 
Note that a bτ τ τ= =  is just the fixed delay between locations a and b. To obtain the 
required additional equations, we make the linearity assumption 0α →  in Eq (2.2)  
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Solving, we find 
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A similar solution may be obtained for ( , )bH x ω . The inverse Fourier transform of the 
synaptic action field ( , )aH x ω is given by the following integral in the complex ω  plane 
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 Regional resonances are given by the poles of the integrand in Eq (A12), that is 
 
                                               ( )21 4 exp 2 0jβ ωτ− − =                                               (A13) 
 
To find the poles, let R jω ω γ= − ; this form is consistent with 0γ >  indicating 
instability. For Eq (A13) to be valid, the real part of the frequency must satisfy  
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    1, 2,3,...

2R
n nπω τ = =

                                        (A14) 
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Also, for Eq (A13) to be valid, the imaginary part of the frequency must satisfy  
 
                                             ( )21 4 cos( )exp 2 0nβ π γτ− − =                                       (A15) 
 
Noting that ( )cos( ) 1 nnπ = −  we see that this equation can only be satisfied for even 
integers, 2,4,6,...n = We keep only even integers in Eq (A14) to obtain 
 

                                                  1, 2,3,...R n nω τ π= =                                                 (A16) 
 
                                               ( )21 4 exp 2 0β γτ− − =                                                 (A17) 
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Appendix B. Neocortical oscillation in an idealized one-dimensional loop 
  
The excitatory synaptic action at cortical location x may be expressed in terms of an inner 
integral over a closed cortical loop of length L and outer integral over distributed axon 
propagation speeds as                  
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In this simplest (anisotropic) one-dimensional version (Nunez 1972, 1974a), axons are 
assumed to run only in the anterior-posterior direction of each hemisphere. In later 
versions (Nunez 1995), the cortico-cortical axons are parceled into M fiber systems with 
connection densities that fall off exponentially with separation �x –x1�, that is 
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where �q is the number of synapses per q-system axon. Define the Fourier transform in an 
infinite neocortical-white matter medium  
                                            

                                        
( ), ( , )jkx j tH k e dx H x t e dtωω

+∞ +∞
− −

−∞ −∞

= ∫ ∫
                                  (B3) 

 
or, alternately, in a closed neocortical loop of length L 
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Periodic boundary conditions in the closed loop require that ( , ) and ( , ) /H x t H x t x∂ ∂  be 
continuous functions of x, requiring all wavelengths to equal L divided by an integer; that 
is, only the following discrete spatial modes are allowed 
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Such periodic boundary conditions differ by the factor 2 above from waves in media with 
fixed end conditions like a violin string. Consider the limiting case where all but one 
( )1λ λ→  of the axon systems in Eq (B2) have much shorter ranges than the dominant 
waves, that is, n qk λ<< . In this case, the short axon systems add to background cortical 
excitability, but don't alter the form of the dispersion function (Nunez 1995). Equations 
(B1), (B2), and (B4) then yield 
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Here ρ  is the number of synapse per axon, and the function ( )X ω  accounts for the finite 
length L of the cortical loop; that is, ( ) 1X ω = when the Fourier transform (B3) is used to 
approximate the Fourier series (B4). Analytic and numerical studies (Srinivasan 1995; 
Nunez 1995) show that this is a reasonable approximation in cortical-white matter 
systems with 1Lλ  and 1n > . For example, if the longest cortico-cortical system 
consists of axons with characteristic fall off over 5-10 cm in a closed loop of 60 cmL = , 

 6-12Lλ = ; however, the effect of finite size L tends to eliminate the fundamental mode 
1.n =  Additional effects of finite size are considered by the spherical shell model 

outlined in appendix C.  
 
One approach is to convert Eq (B6) to a plausible partial differential equation and apply 
boundary conditions afterwards, a procedure with precedent in studies of physical 
systems. This approach facilitates the development of approximate nonlinear models 
(Jirsa and Haken 1997; Nunez 1995, 2000; Nunez and Srinivasan 2006a). However, we 
focus here on linear models that provide easily interpreted analytic solutions. By 
expanding an assumed sigmoid relationship between action potential density and synaptic 
action, one may obtain the a second relation between synaptic activity and action 
potentials in tissue mass (Jirsa and Haken 1997) 
 

                                       
3( , ) 2 ( , ) ( , )G x t H x t H x tρ = β − α                                       (B7) 

 
In the linear limit ( )0α → , Eq (B7) may be Fourier transformed as in Eq (B3) to obtain  
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                                                ( , ) 2 ( , )G k H kρ ω = β ω                                               (B8) 
 
With the approximation ( ) 1X ω = , Eqs (B6) and (B8) yield cortical output in terms of 
input, that is 
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where the dispersion function (inverse of cortical transfer function) is 
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With the usual methods of linear systems analysis in two independent variables, 
the inverse Fourier transform yields the synaptic action density  
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Equation (B11) involves contour integrals in the complex plane. Predicted oscillation 
frequencies and damping are obtained from the poles of the integrand, obtained from the 
dispersion relation  
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The complex frequency is given in terms of real and imaginary parts by               
                                       

                                            ( ) ( ) ( )Rk k j kω = ω − γ                                                    (B13)             
 
consistent with 0γ >  predicting unstable waves in this linear approximation.  
 
In the idealized case of a strongly peaked axon speed distribution 1 1( ) ( )f v v v= δ − ,  
Eqs (B12) and (B5) yield predicted oscillation frequencies and damping  
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Figure 4 shows composite data from three independent studies on cortico-cortical axon 
speeds (Nunez 1995). The solid line represents the following fit  
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Here the numerical factor in Eq (B16) is required to force the normalization  
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Numerical studies of Eq (B12) may be summarized as follows. The mode frequencies 
given by Eq (B14) are essentially unchanged by the more realistic 1( )Exf v . The main 
effect of distributed axon speeds is to "wash out" higher modes due to increases in 
relative damping. When 1 1( ) ( )f v v v= δ − , Eq (B15) predicts that all linear modes 
become unstable for 1β > . By contrast, distributed axon speeds 1( )Exf v cause nγ γ→ . 
The minimum values of cortical excitability required for linear instability may be 
estimated from the relation  
 

                                       0 0.66 0.34         1  5n nk k
γβ λ λ=

  ≈ + < <   
  

                        (B18)                    

 
 
 
Appendix C. Neocortical oscillations in an idealized spherical shell  
 
 
In this model, the surface integral in Eq (2.1) now applies to the shell shown in fig. 4 
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Here 1 1 1sind d dΩ = θ θ φ is an element of solid angle and the vectors 1 and r r locate the 
spherical surface coordinates ( ),θ φ →Ω and ( )1 1 1,θ φ →Ω , respectively. The axon 
distribution function may be expressed in terms of Q homogeneous and isotropic systems 
with exponential fall offs in connection density plus generally inhomogeneous and 
anisotropic systems 1 1 1( , , , , )vθ φ θ φ    
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Here 1( , )η Ω Ω is the angle between the surface coordinates Ω and 1Ω and R is sphere 
radius. Again we proceed with the idealized case where all axon systems except one 

1λ λ→ have negligible propagation delays; the short axon systems then only contribute 
by adding to background cortical excitability. We also assume a peaked axon speed 
distribution 1 1 1( ) ( )f v v v= δ − so that axon distribution reduces to  
 

                                     
( )

( )
1( , )2 2

1

1
( , )

2 1

R

R

R e
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                                    (C3) 

 
The factors in front of the exponential provide the proper normalization of the surface 
integral 
                                                     

1

1 1( , )d ρ
Ω

ℜ Ω Ω Ω =∫                                                 (C4) 

where ρ  is the number of synapses per axon on the long fiber system. Define the 
temporal Fourier transform 

                                       ( ) ( ), , j tH H t e dtωω
+∞

−

−∞

Ω = Ω∫                                                 (C5) 

which is to be expressed in terms of the usual spherical harmonic functions  (generalized 
Fourier series)  
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,
l

lm lm
l m l

H H Yω ω
∞ +
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Ω = Ω∑∑                                            (C6) 

 
These spherical harmonics are orthogonal in the Hermitian sense on the sphere such that 
 
                                    ( )*( ) ( , )lm lmH H Y dω ω

Ω

= Ω Ω Ω∫                                                 (C7) 

 
The equivalent action potential functions ( )lmG ω and ( ),G ωΩ obey relations similar to 
Eqs (C5-C7). From the relations above, we obtain the following equation relating the 
spherical harmonic coefficients 
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Here we have defined the function  
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where the functions (cos )lP β are the usual Legendre polynomials. From the linear 
approximation to Eq (2.2) ( 0)α → , we obtain 
 
                                              ( ) 2 ( )lm lmG Hρ ω β ω=                                                    (C10) 
 
 Substitution into Eq (C8) yields the cortical synaptic output coefficients ( )lmH ω an terms 
of inputs 0 ( )lmH ω  
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1 ( )
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S l

HH
S
ωω

β ω
=

−
                                                     (C11) 

 
Here the cortical excitability parameter for the sphere is  
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The spatial-temporal behavior of waves in the spherical shell is obtained from the inverse 
Fourier transform of Eq (C5) and the series expansion Eq (C6) 
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Preferred oscillation frequencies for each spatial mode l  are obtained from the poles of 
the integrand in Eq (C13). These resonant frequencies are independent of the index m 
because the single retained axon system was assumed to be homogeneous and isotropic. 
These preferred frequencies are obtained from the solutions to  
 
                                                  1 ( ) 0    0,1,2,...S lS lβ ω− = =                                     (C14) 
 
The integrals ( )lS ω  were evaluated recursively (Katznelson, 1981,1982) as follows 
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Here we have defined lRz j R
v

ω λ= + , where the complex frequencies of modes l  are 

l Rl ljω = ω − γ , consistent with 0lγ >  indicating mode instability. Given our basic 
premise that instability is prevented in healthy brains by enhanced inhibitory actions, e.g. 

0α ≠  in Eq (2.2), our numerical study of Eq (C14) focuses on modes close to instability 
( 0)lγ ≈ . The real and imaginary frequencies are related to z by 
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Appendix D. Quasi-linear approximation to the one-dimensional loop model 
 
Full nonlinear analyses of wave phenomena typically involve mathematics too 
complicated to allow analytic solutions; rough approximations or numerical solutions are 
often the main options. Expected nonlinear effects of general wave phenomena include 
coupling of different spatial modes and amplitude limits on linearly unstable oscillations.  
Here we assume weak to moderate nonlinearity in the model derived in appendix B to 
obtain an approximate analytic solution that is then checked against numerical solutions. 
From B6 with 1 1( ) ( )f v v vδ= − , we obtain 
                              

                 
2 2 2
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              (D1) 

 
The function ( )X ω   accounts for the finite length L of the cortical loop. Other studies 
indicate that ( ) 1X ω =  is a reasonable approximation for 1 and modes 1L nλ >> >  
(Srinivasan 1995); that is, the Fourier transform (B3) is used to approximate the Fourier 
series B4. One approach is to convert Eq (D1) to a partial differential equation and apply 
boundary conditions afterwards (Jirsa and Haken 1997; Nunez 1995, 2000; Nunez and 
Srinivasan 2006a). The differential equation equivalent to Eq (D1) is  
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The proposed input-output sigmoid functional relation is approximated by 
 

                                   
3( , ) 2 ( , ) ( , )G x t H x t H x tρ = β − α                                    (B7)          

 
yielding the nonlinear partial differential equation in the modulation of synaptic action 
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2 2

2 2 2 2 2 2 2
02 2
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2

H H Hv H v H H v v H
tt x

∂ α ∂ ∂
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  (D3)      

                      
Our numerical solutions of this equation indicate that mode coupling tends to be small for 
small values of α  as expected. In the following semi-analytical approach we seek 
oscillatory solutions of the form  
 
                                    ( , ) ( )cos      - / 2 / 2n n

n

H x t W t k x L x L= < <∑                       (D4)      

which satisfies the required periodic boundary conditions that  and HH
x

∂
∂

 are continuous 

around the cortical loop provided 
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nk n
L
π

= =                                                   (D5) 

 
In the linear limit 0α → , each function ( )nW t  oscillates with the mode frequency ( )nkω ; 
that is, with negligible mode coupling. Consider the case of no external input 0 0H = with 
an initial condition (cortical state) ( ,0)H x  that excites only a single mode nk . In the limit 
of weak nonlinearity, we neglect mode coupling to express 
 
                                   ( , ) ( )cos    - / 2 / 2n nH x t W t k x L x L= < <                            (D6)                
 
The time average over any integer number of cycles of any oscillation frequency is  
 

                                                    
2

2 ( )
2

n
n
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where nA  is the amplitude of mode n. Substitute into D6 into D3 and focus on 
oscillations at the location with maximum amplitude, 0x = , which is any arbitrary 
location determined by rotation of the coordinate system. Replacing the nonlinear terms 
by their cycle averages yields the ordinary differential equation  
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Compare Eq (D8) to the well known 2nd order system for a linear damped oscillator with 
damping γ  and real oscillation frequency 2 2 2

0Rω ω γ= −   
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For 1β >  we expect amplitudes to grow until the cycle-averaged γ equals zero; that is, 
when the oscillation amplitude reaches 
 

                                           
4( 1)         1,  0

3nA β −
β > α >

α
                             (D10)        

 
We obtained numerical solutions to Eq (D8) for the uncoupled mode 2n = and fit the 
asymptotic amplitude to the function ( )2 1 baA α β−∝ −  for the parameter range 
0.05 0.5,  1.1 1.6α β≤ ≤ ≤ ≤ obtaining 0.476,  0.501a b= = in close agreement to Eq 
(D10).  
 
If we identify the term 2

0ω  as the coefficient of W in Eq (D8) and use Eq (D10), we obtain 
a new (nonlinear) estimate for the frequency of the n th mode 
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From comparison of Eq (D11) to Eq (B14) we see that the factor 2
4 10.7 1
3

 β −
< < β 

 

for  1 1.6≤ β ≤  is the estimated "correction" due to small nonlinear effects, which cause 
only minimal changes in oscillation frequencies over this range of β . This outcome was 
also confirmed by numerical solutions of Eq (D3).    
 
 
 
 
 
 
Table 1. Estimated spatial resolution of recorded potentials or magnetic fields generated 
by cortical sources 
 
Recording Method Typical Spatial Resolution (mm) 
Microelectrode of radius ξ   ξ≥  
LFP 0.1-1  
ECoG 2-5 
Intra-skull recording 5-10  
Untransformed EEG 50  
Untransformed MEG 50  
High resolution EEG 20-30  
High resolution MEG unknown 
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Table 2. Spatial scales of cortical tissue structure related to function 
 
Structure Diameter (mm) # Neurons Anatomical Description 
minicolumn 0.03 102 spatial extent of inhibitory connections  
module 0.3 104 input scale for cortico-cortical fibers  
macrocolumn 3.0 106 intracortical spread of pyramidal cell  
region 50 108 Brodmann area 
lobe 170 109 areas bordered by major cortical folds 
hemisphere 400 1010 ½ brain 
 
Table 3. Mode ( )n  frequencies (Hz) with corresponding wavelength (cm), predicted by 
one-dimensional model; dependence of linearly unstable oscillations on cortical 
excitation level ( )β .  

   n β↓ →        1.0   1.2    1.3   1.37   1.4   2.0  2.7 
1, 60 cm None None None None None None None 
2, 30   16   12     8     4 None None None 
3, 15   31   28    27    26    26    10 None 
4, 7.5   43   42    42    40    40    32    12 
 
 

 
fig. 1. In this paper's oversimplification only the top-down interactions of global 
dynamics on local networks are considered (solid arrow); bottom-up interactions (dashed 
arrow) are neglected to first approximation to create tractable and more easily 
interpretable mathematical models.  
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                                        fig. 2a.  
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                                     Fig 2b. 
 
 
 
fig. 2. A time slice of alpha rhythm topography recorded with 131 channels at the time of 
peak potential in a posterior-midline electrode is shown (Wingeier 2004). Light and dark 
areas are approximately 180 deg out of phase. (a) Average referenced potential. (b) High 
resolution (spatially high pass filtered) estimate of the same raw data based on the 
Melbourne dura image algorithm (using a 4-sphere head model, Nunez et al 1994; 
Silberstein 1995a). The New Orleans spline Laplacian (independent of head model) 
yields nearly identical estimates of dura potential with dense electrode arrays (> 100). 
Areas with similar shading are roughly in phase, demonstrating so-called "zero phase 
lag" dynamics. The correlation coefficient based on point to point comparison of the 2 
independent high resolution estimates is 0.95  (Nunez et al 1994; Nunez and Srinivasan 
2006a).  
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fig. 3. Relationships between the 3 global models based on assumed distributions of 
cortico-cortical axons given by 1 1( , , )vℜ r r ; appropriate section numbers are listed.   
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fig. 4. Distribution of axon propagation speeds in myelinated human cortico-cortical 
axons are estimated from 3 independent studies and normalized for plotting on the same 
scale; the solid line is a fit to the function ( )f v given by Eq (2.10). Diameter histograms 
in humans (empty and filled circles) were transformed based on a axon speed of 5.5 
m/sec per micrometer of axon diameter (Waxman and Bennett 1972). Empty circle 
measurements were obtained from corpus callosum (Tomasch 1954). Filled circle data 
were obtained from frontal lobe (Bishop and Smith 1964). Direct speed estimates (filled 
squares) were obtained from callosal fibers of rhesus monkey (Swadlow et al 1978). 
Additional data from Blinkov and Glezer (1968) were consistent with this picture, but 
could not be normalized to fit on the same scale so they were excluded. This plot was 
redrawn based on a similar plot shown in Nunez (1995).     
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fig. 5. Spherical shell of radius R representing an idealized neocortex-white matter system 
of one hemisphere as in a computer inflated model to smooth out cortical folds. Angular 
location in the shell is given by the spherical coordinates ( ),θ φ , essentially (latitude, 
longitude), represented by the solid angle Ω . A small surface area in a thin spherical 
shell is 2 2sindA R d d R dθ θ φ= = Ω . Standing waves in this model occur based on axon 
speeds in assumed long cortico-cortical axon systems. Shorter axons contribute only to 
background cortical excitability as discussed in Sec 2.  
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fig. 6. Predictions of the spherical shell model of Sec. 2.5. (a) Mode frequencies f (Hz) 
and (b) corresponding damping γ (Hz) for the 3 lowest modes with corresponding 
wavelengths ld : (long dashes, 1 60 cmd = ), (solid line, 2 30 cmd =  ), and (short dashes, 

3 15 cmd = ). The horizontal axis is the background cortical excitation parameter β . 
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Physiological parameters adopted here are ( )0.15 cm, 9.55 cm, 7 m/secR vλ = = = .  The 
first mode becomes non-oscillatory for 0.7β  , well before it becomes weakly damped; 
with these parameter choices, this mode is not predicted to be observable.  The second 
mode exhibits progressively slower oscillations over the 20 to 0 Hz range as β  increases 
from about 0.7 to 2.6. However, this mode doesn't become weakly damped until β gets 
close to 2 when oscillation frequencies are in the 10 Hz range.  Still larger β causes 
further frequency reduction of mode 2, which become unstable ( )1 0γ > for 2β > .  For 
larger values of β higher modes oscillate with progressively lower frequencies, a process 
very similar to that of the one-dimensional model.  Discontinuities in curve slopes occur 
where multiple branches of the dispersion relation intersect; higher frequency branches 
are omitted for plot clarity.  
 
 
 

 
 
fig. 7. Ratios of phase velocity (dashed line) and group velocity (solid line) to axon 
propagation speed predicted by the one dimensional model of length L of Sec 2.5. 

/  or /p gV v v v v= is plotted versus spatial wavelength for wave components traveling in 

a packet. Parameters are ( )0.15 cm, 60 cm, 1Lλ β= = = . 
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